37 research outputs found

    Prevotella genus and its related NOD-like receptor signaling pathway in young males with stage III periodontitis

    Get PDF
    BackgroundAs periodontitis progresses, the oral microbiota community changes dynamically. In this study, we evaluated the dominant bacteria and their roles in the potential pathway in young males with stage III periodontitis.Methods16S rRNA sequencing was performed to evaluate variations in the composition of oral bacteria between males with stage I and III periodontitis and identify the dominant bacteria of each group. Function prediction was obtained based on 16S rRNA sequencing data. The inhibitor of the predominant pathway for stage III periodontitis was used to investigate the role of the dominant bacteria in periodontitis in vivo and in vitro.ResultsChao1 index, Observed Species and Phylogenetic Diversity (PD) whole tree values were significantly higher in the stage III periodontitis group. β-diversity suggested that samples could be divided according to the stages of periodontitis. The dominant bacteria in stage III periodontitis were Prevotella, Prevotella_7, and Dialister, whereas that in stage I periodontitis was Cardiobacterium. KEGG analysis predicted that variations in the oral microbiome may be related to the NOD-like receptor signaling pathway. The inhibitor of this pathway, NOD-IN-1, decreased P. intermedia -induced Tnf-α mRNA expression and increased P. intermedia -induced Il-6 mRNA expression, consistent with the ELISA results. Immunohistochemistry confirmed the down-regulation of TNF-α and IL-6 expressions by NOD-IN-1 in P. intermedia–induced periodontitis.ConclusionThe composition of the oral bacteria in young males varied according to the stage of periodontitis. The species richness of oral microtia was greater in young males with stage III periodontitis than those with stage I periodontitis. Prevotella was the dominant bacteria in young males with stage III periodontitis, and inhibition of the NOD-like receptor signaling pathway can decrease the periodontal inflammation induced by P. intermedia

    A male idol becoming a girl? Nisu fans' sexual fantasy about male stars

    No full text
    The emergent movement of reverse Sue (Nisu) in China refers to the practice of (especially female) fans imagining themselves as having a strong male role to their idols' weak female role. In this process, female fans take on a powerful, active role to protect and look after their male idols in female form. Examining how Nisu fans interact with other types of fans and negotiate a mainstream gender discourse dominated by traditional heterosexual norms reveals how, as a burgeoning subcultural group, female Nisu fans express their subversive potential by seeking the power of an imaginary phallus to defy male hegemony. However, their internal divergence and self-contradiction might weaken this defiance

    Amino acid motifs for the identification of novel protein interactants

    No full text
    Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics

    Nitric oxide sensing revisited

    No full text
    Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level

    Individual Differences in the Accuracy of Judgments of Learning Are Related to the Gray Matter Volume and Functional Connectivity of the Left Mid-Insula

    No full text
    The judgment of learning (JOL) is an important form of prospective metamemory judgment, and the biological basis of the JOL process is an important topic in metamemory research. Although previous task-related functional magnetic resonance imaging (MRI) studies have examined the brain regions underlying the JOL process, the neural correlates of individual differences in JOL accuracy require further investigation. This study used structural and resting-state functional MRI to investigate whether individual differences in JOL accuracy are related to the gray matter (GM) volume and functional connectivity of the bilateral insula and medial Brodmann area (BA) 11, which are assumed to be related to JOL accuracy. We found that individual differences in JOL accuracy were related to the GM volume of the left mid-insula and to the functional connectivity between the left mid-insula and various other regions, including the left superior parietal lobule/precuneus, bilateral inferior parietal lobule/intraparietal sulcus, right frontal pole and left parahippocampal gyrus/fusiform gyrus/cerebellum. Further analyses indicated that the functional connectivity related to individual differences in JOL accuracy could be divided into two factors and might support information integration and selective attention processes underlying accurate JOLs. In addition, individual differences in JOL accuracy were not related to the GM volume or functional connectivity of the medial BA 11. Our findings provide novel evidence for the role of the left mid-insula and its functional connectivity in the JOL process

    EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention

    Full text link
    Vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time applications. In this paper, we propose a family of high-speed vision transformers named EfficientViT. We find that the speed of existing transformer models is commonly bounded by memory inefficient operations, especially the tensor reshaping and element-wise functions in MHSA. Therefore, we design a new building block with a sandwich layout, i.e., using a single memory-bound MHSA between efficient FFN layers, which improves memory efficiency while enhancing channel communication. Moreover, we discover that the attention maps share high similarities across heads, leading to computational redundancy. To address this, we present a cascaded group attention module feeding attention heads with different splits of the full feature, which not only saves computation cost but also improves attention diversity. Comprehensive experiments demonstrate EfficientViT outperforms existing efficient models, striking a good trade-off between speed and accuracy. For instance, our EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy, while getting 40.4% and 45.2% higher throughput on Nvidia V100 GPU and Intel Xeon CPU, respectively. Compared to the recent efficient model MobileViT-XXS, EfficientViT-M2 achieves 1.8% superior accuracy, while running 5.8x/3.7x faster on the GPU/CPU, and 7.4x faster when converted to ONNX format. Code and models are available at https://github.com/microsoft/Cream/tree/main/EfficientViT.Comment: CVPR 202

    Antibacterial Effect of Black Pepper Petroleum Ether Extract against Listeria monocytogenes and Salmonella typhimurium

    No full text
    The aim of the present study was to evaluate the antibacterial effect of black pepper petroleum ether extract (BPPE) against Listeria monocytogenes ATCC 19115 and Salmonella typhimurium ATCC 14028. The results showed that the BPPE had a strong antimicrobial activity against L. monocytogenes and S. typhimurium, and 2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane (9.36%) and caryophyllene oxide (4.85%) were identified as the two primary components of BPPE. The ability of cells to break down hyperoxide was decreased, and the activities of POD and CAT were inhibited. The activities of key metabolic enzymes shed some light on the biochemical mechanism of aglycon cell growth inhibition, indicating that the energetic metabolism of L. monocytogenes and S. typhimurium was markedly influenced by the BPPE. The contents of key organic acids varied significantly, resulting in remarkable abnormalities in the energetic metabolism of L. monocytogenes and S. typhimurium. Thus, the consecution of energetic metabolism was destroyed by the BPPE, which contributed to metabolic dysfunction, the suppression of gene transcription, and cell death

    WH<sup>2</sup>D<sup>2</sup>N<sup>2</sup>: distributed AI-enabled OK-ASN service for Web of Things

    No full text
    Model data-driven ontology and knowledge presentation for evolving semantic Asian social networks (OK-ASN) is a critical strategy for web of things (WoT) services. Meanwhile, Deep Neural Network (DNN)-based OK-ASN service in WoT is growing rapidly. However, most DNN-based services cannot utilize the potential of WoT fully, as heterogeneity exists in WoT. Therefore, this article proposes a novel framework called Web-based Heterogeneous Hierarchical Distributed Deep Neural Network (WH2D2N2) to deploy the DNNs for OK-ASN services on WoT, overcoming the heterogeneity. The architecture of the system and the designed Edge-Cloud-Joint execute scheme utilize heterogeneous devices to make DNN inference ubiquitous and output two types of results to meet various requirements. To bring robustness to OK-ASN services, a global scheduling is designed to arrange the workflow dynamically. The results of our experiments prove the efficiency of the execute scheme and the global scheduling in the system.</p
    corecore