128,024 research outputs found
Magnetic impurity in the vicinity of a vacancy in bilayer graphene
We use quantum Monte Carlo method to study a magnetic impurity located next
to a vacancy in bilayer graphene with Bernal stacking. Due to the broken
symmetry between two sublattices in bilayer system, there exist two different
types of vacancy induced localized state. We find that the magnetic property of
the adatom located on the adjacent site of the vacancy depends on whether the
vacancy belongs to A or B sublattice. In general, local moment is more strongly
suppressed if the vacancy belongs to the sublattice A when . We
switch the values of the chemical potential and study the basic thermodynamic
quantities and the correlation functions between the magnetic adatom and the
carbon sites.Comment: 3 pages, 4 figures, conferenc
Tensor Anisotropies in an Open Universe
We calculate the anisotropies in the cosmic microwave background induced by
long-wavelength primordial gravitational waves in a universe with negative
spatial curvature, such as are produced in the ``open inflation'' scenario. The
impact of these results on the COBE normalization of open models is discussed.Comment: 5pgs, 2 figs.; also avalable at http://www.sns.ias.edu/~whu, revision
reflects ApJL published version, model dependence clarifie
Mapping functions and critical behavior of percolation on rectangular domains
The existence probability and the percolation probability of the
bond percolation on rectangular domains with different aspect ratios are
studied via the mapping functions between systems with different aspect ratios.
The superscaling behavior of and for such systems with exponents
and , respectively, found by Watanabe, Yukawa, Ito, and Hu in [Phys. Rev.
Lett. \textbf{93}, 190601 (2004)] can be understood from the lower order
approximation of the mapping functions and for and ,
respectively; the exponents and can be obtained from numerically
determined mapping functions and , respectively.Comment: 17 pages with 6 figure
Recommended from our members
Miniature Silicon Nanobeam Resonator Tuned by GST Phase Change Material
We report a silicon optical nanobeam resonator with central hole infiltrated with a thin layer of Ge2Sb2Te5 (GST) material. The resonances can be tuned when the GST changes its phases between the amorphous and crystalline states
Effects of Surfactant Solubility on the Hydrodynamics of a Viscous Drop in a DC Electric Field
The physico-chemistry of surfactants (amphiphilic surface active agents) is
often used to control the dynamics of viscous drops and bubbles. Surfactant
sorption kinetics has been shown to play a critical role in the deformation of
drops in extensional and shear flows, yet to the best of our knowledge these
kinetics effects on a viscous drop in an electric fieldhave not been accounted
for. In this paper we numerically investigate the effects of sorption kinetics
on a surfactant-covered viscous drop in an electric field. Over a range of
electric conductivity and permittivity ratios between the interior and exterior
fluids, we focus on the dependence of deformation and flow on the transfer
parameter , and Biot number that characterize the extent of
surfactant exchange between the drop surface and the bulk. Our findings suggest
solubility affects the electrohydrodynamics of a viscous drop in distinct ways
as we identify parameter regions where (1) surfactant solubility may alter both
the drop deformation and circulation of fluid around a drop, and (2) surfactant
solubility affects mainly the flow and not the deformation
Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model
In this paper, it is shown that a configuration modulated system described by
the Frenkel-Kontorova model can be locked at an incommensurate phase when the
quantum zero point energy is taken into account. It is also found that the
specific heat for an incommensurate phase shows different parameter-dependence
in sliding phase and pinning phase. These findings provide a possible way for
experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure
Mode entanglement of electrons in the one-dimensional Frenkel-Kontorova model
We study the mode entanglement in the one-dimensional Frenkel-Kontorova
model, and found that behaviors of quantum entanglement are distinct before and
after the transition by breaking of analyticity. We show that the more extended
the electron is, the more entangled the corresponding state. Finally, a
quantitative relation is given between the average square of the concurrence
quantifying the degree of entanglement and the participation ratio
characterizing the degree of localization.Comment: 4 pages, 4 figures. V
Non-Markovian Dynamics and Entanglement of Two-level Atoms in a Common Field
We derive the stochastic equations and consider the non-Markovian dynamics of
a system of multiple two-level atoms in a common quantum field. We make only
the dipole approximation for the atoms and assume weak atom-field interactions.
From these assumptions we use a combination of non-secular open- and
closed-system perturbation theory, and we abstain from any additional
approximation schemes. These more accurate solutions are necessary to explore
several regimes: in particular, near-resonance dynamics and low-temperature
behavior. In detuned atomic systems, small variations in the system energy
levels engender timescales which, in general, cannot be safely ignored, as
would be the case in the rotating-wave approximation (RWA). More problematic
are the second-order solutions, which, as has been recently pointed out, cannot
be accurately calculated using any second-order perturbative master equation,
whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to
all perturbative open-system master equations, has a profound effect upon
calculation of entanglement at low temperatures. We find that even at zero
temperature all initial states will undergo finite-time disentanglement
(sometimes termed "sudden death"), in contrast to previous work. We also use
our solution, without invoking RWA, to characterize the necessary conditions
for Dickie subradiance at finite temperature. We find that the subradiant
states fall into two categories at finite temperature: one that is temperature
independent and one that acquires temperature dependence. With the RWA there is
no temperature dependence in any case.Comment: 17 pages, 13 figures, v2 updated references, v3 clarified results and
corrected renormalization, v4 further clarified results and new Fig. 8-1
- …
