9,678 research outputs found
Hypotheses for near-surface exchange of methane on Mars
The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7
ppb of methane on Mars. This in situ measurement reorients our understanding of
the Martian environment and its potential for life, as the current theories do
not entail any geological source or sink of methane that varies sub-annually.
In particular, the 10-fold elevation during the southern winter indicates
episodic sources of methane that are yet to be discovered. Here we suggest a
near-surface reservoir could explain this variability. Using the temperature
and humidity measurements from the rover, we find that perchlorate salts in the
regolith deliquesce to form liquid solutions, and deliquescence progresses to
deeper subsurface in the season of the methane spikes. We therefore formulate
the following three testable hypotheses. The first scenario is that the
regolith in Gale Crater adsorbs methane when dry and releases this methane to
the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ/mol
to explain the magnitude of the methane spikes, higher than existing laboratory
measurements. The second scenario is that microorganisms convert organic matter
in the soil to methane when they are in liquid solutions. This scenario does
not require regolith adsorption, but entails extant life on Mars. The third
scenario is that deep subsurface aquifers produce the bursts of methane.
Continued in situ measurements of methane and water, as well as laboratory
studies of adsorption and deliquescence, will test these hypotheses and inform
the existence of the near-surface reservoir and its exchange with the
atmosphere.Comment: Accepted for publication on Astrobiolog
Visualization of metabolic interaction networks in microbial communities using VisANT 5.0
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.This work was supported by the National Institutes of Health, R01GM103502-05 to CD, ZH and DS. Partial support was also provided by grants from the Office of Science (BER), U.S. Department of Energy (DE-SC0004962), the Joslin Diabetes Center (Pilot & Feasibility grant P30 DK036836), the Army Research Office under MURI award W911NF-12-1-0390, National Institutes of Health (1RC2GM092602-01, R01GM089978 and 5R01DE024468), NSF (1457695), and Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS), Purchase Request No. HR0011515303, Program Code: TRS-0 Issued by DARPA/CMO under Contract No. HR0011-15-C-0091. Funding for open access charge: National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (R01GM103502-05 - National Institutes of Health; 1RC2GM092602-01 - National Institutes of Health; R01GM089978 - National Institutes of Health; 5R01DE024468 - National Institutes of Health; DE-SC0004962 - Office of Science (BER), U.S. Department of Energy; P30 DK036836 - Joslin Diabetes Center; W911NF-12-1-0390 - Army Research Office under MURI; 1457695 - NSF; HR0011515303 - Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS); HR0011-15-C-0091 - DARPA/CMO; National Institutes of Health)Published versio
Detecting paired and counterflow superfluidity via dipole oscillations
We suggest an experimentally feasible procedure to observe paired and
counterflow superfluidity in ultra-cold atom systems. We study the time
evolution of one-dimensional mixtures of bosonic atoms in an optical lattice
following an abrupt displacement of an additional weak confining potential. We
find that the dynamic responses of the paired superfluid phase for attractive
inter-species interactions and the counterflow superfluid phase for repulsive
interactions are qualitatively distinct and reflect the quasi long-range order
that characterizes these states. These findings suggest a clear experimental
procedure to detect these phases, and give an intuitive insight into their
dynamics.Comment: 4 pages,5 figure
Smart Cities are Big Cities - Comparative Advantage in Chinese Cities
The literature on China indicates that the concentration of economic activities in China is less than in other industrialized countries. Institutional limits are largely held responsible for this finding (e.g. the Hukou system); firms and workers are not able to take full advantage of the benefits from agglomeration economies. China is changing rapidly, however, also in this respect. We show that, by using the methodology developed by Davis and Dingel (2013), high-skilled workers in high-skill intensive sectors sort into larger locations. We demonstrate this for regions, agglomerations, cities, and for skills, occupations, and sectors. The results are strongest for cities and skills, followed by agglomerations and occupations, respectively. Between 2000 and 2010 this sorting process has become stronger, which we interpret as an indication that institutional limitations in China against further agglomeration weaken, and that the consensus in the literature that Chinese cities are too small' needs some qualification
- …