5,147 research outputs found

    Geometric phase outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We study the Hawking effect in terms of the geometric phase acquired by a two-level atom as a result of coupling to vacuum fluctuations outside a Schwarzschild black hole in a gedanken experiment. We treat the atom in interaction with a bath of fluctuating quantized massless scalar fields as an open quantum system, whose dynamics is governed by a master equation obtained by tracing over the field degrees of freedom. The nonunitary effects of this system are examined by analyzing the geometric phase for the Boulware, Unruh and Hartle-Hawking vacua respectively. We find, for all the three cases, that the geometric phase of the atom turns out to be affected by the space-time curvature which backscatters the vacuum field modes. In both the Unruh and Hartle-Hawking vacua, the geometric phase exhibits similar behaviors as if there were thermal radiation at the Hawking temperature from the black hole. So, a measurement of the change of the geometric phase as opposed to that in a flat space-time can in principle reveal the existence of the Hawking radiation.Comment: 14 pages, no figures, a typo in the References corrected, version to appear in JHEP. arXiv admin note: text overlap with arXiv:1109.033

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Responses of rice paddy micro-food webs to elevated CO<sub>2</sub> are modulated by nitrogen fertilization and crop cultivars

    Get PDF
    Elevated atmospheric CO2 concentrations (eCO(2)) often increase plant growth but simultaneously lead to the nitrogen (N) limitation in soil. The corresponding mitigation strategy such as supplementing N fertilizer and growing high-yielding cultivars at eCO(2) would further modify soil ecosystem structure and function. Little attention has, however, been directed toward assessing the responses of soil food web. We report results from a long-term free air CO2 enrichment (FACE) experiment in a rice paddy agro-ecosystem that examined the responses of soil micro-food webs to eCO(2) and exogenous nitrogen fertilization (eN) in the rhizosphere of two rice cultivars with distinctly weak and strong responses to eCO(2). Soil micro-food web parameters, including microfauna (protists and nematodes) and soil microbes (bacteria and fungi from phospholipid fatty acid (PLFA) analysis), as well as soil C and N variables, were determined at the heading and ripening stages of rice. Results showed that eCO(2) effects on soil micro food webs depended strongly on N fertilization, rice cultivar and growth stage. eCO(2) stimulated the fungal energy channel at the ripening stage, as evidenced by increases in fungal biomass (32%), fungi:bacteria ratio (18%) and the abundance of fungivorous nematodes (64%), mainly due to an enhanced carbon input. The eN fueled the bacterial energy channel by increasing the abundance of flagellates and bacterivorous nematodes, likely through alleviating the N-limitation of plants and rhizosphere under eCO(2). While eCO(2) decreased the abundance of herbivorous nematodes under the weak-responsive cultivar by 59% and 47% with eN at the heading and ripening stage, respectively, the numbers of herbivorous nematodes almost tripled (x2.9; heading) and doubled (x1.6; ripening) under the strong responsive cultivar with eCO(2) at eN due to higher root quantity and quality. Structural equation model (SEM) showed that lower trophic-level organisms were affected by bottom-up forces of altered soil resources induced by eCO(2) and eN, and effects on higher trophic level organisms were driven by bottom up cascades with 69% of the variation being explained. Taken together, strategies to adapt climate change by growing high-yielding crop cultivars under eCO(2) may face a trade-off by negative soil feedbacks through the accumulation of root-feeding crop pest species. (C) 2017 Elsevier Ltd. All rights reserved

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Entanglement generation outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte

    Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition

    Get PDF
    Earthworms could affect soil C and N cycling process to balance their energy and nutrients requirements, and they could also regulate soil microbial community structure and microbial acquisition for C and N. However, the connection between faunal and microbial stoichiometry in the coupling soil C and N cycling remains poorly understood. In a controlled laboratory experiment, we amended soil with five litters differing in litter chemistry (clover, maize stover, wheat straw, Rurnex and bagasse fiber) including a no litter control and treated them without or with earthworms (Metaphire guillelmi). After 90 d incubation, we examined changes in earthworm tissue and microbial stoichiometry and different soil C and N fractions. Earthworm tissue C content was rather stable compared with the fluctuation in tissue N, implying that C is under stronger control and associated with higher demand than N. The presence of earthworm significantly enhanced CO2 emissions and decreased particulate organic carbon (POC) and soil organic carbon (SOC) contents in the low lignin litter species clover, maize stover and wheat straw. Meanwhile, earthworm presence increased N2O cumulative emissions but exerted negligible effects on particulate organic nitrogen (PON) and soil total nitrogen (TN) contents irrespective of litter species. Correspondingly, earthworm regulated microbial C and N acquisition as C to N-degrading enzyme activity ratio were nearly doubled in the low lignin litter species clover, maize stover and wheat straw, while it was decreased in the high lignin litter species Rumex and bagasse fiber. However, the structural equation modeling indicated C loss induced by earthworms was mainly attributed to their effects on soil fungi and bacteria abundance, while much less related to C-degrading enzyme activities. In conclusion, litter species controlled earthworm effects on soil C and N loss and associated microbial acquisition for C and N, highlighting the pivotal role of resource chemistry in the regulation of soil fauna impact on soil functioning and ecosystem services

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    Notes on Black Hole Fluctuations and Backreaction

    Get PDF
    In these notes we prepare the ground for a systematic investigation into the issues of black hole fluctuations and backreaction by discussing the formulation of the problem, commenting on possible advantages and shortcomings of existing works, and introducing our own approach via a stochastic semiclassical theory of gravity based on the Einstein-Langevin equation and the fluctuation-dissipation relation for a self-consistent description of metric fluctuations and dissipative dynamics of the black hole with backreaction of its Hawking radiance
    corecore