172 research outputs found

    Delivery of chemotherapeutic agents using drug-loaded irradiated tumor cells to treat murine ovarian tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. Advanced ovarian cancers are difficult to cure with the current available chemotherapy, which has many associated systemic side effects. Doxorubicin is one such chemotherapeutic agent that can cause cardiotoxicity. Novel methods of delivering chemotherapy without significant side effects are therefore of critical need.</p> <p>Methods</p> <p>In the current study, we generated an irradiated tumor cell-based drug delivery system which uses irradiated tumor cells loaded with the chemotherapeutic drug, doxorubicin.</p> <p>Results</p> <p>We showed that incubation of murine ovarian cancer cells (MOSEC) with doxorubicin led to the intracellular uptake of the drug (MOSEC-dox cells) and the eventual death of the tumor cell. We then showed that doxorubicin loaded MOSEC-dox cells were able to deliver doxorubicin to MOSEC cells in vivo. Further characterization of the doxorubicin transfer revealed the involvement of cell contact. The irradiated form of the MOSEC-dox cells were capable of treating luciferase-expressing MOSEC tumor cells (MOSEC/luc) in C57BL/6 mice as well as in athymic nude mice resulting in improved survival compared to the non drug-loaded irradiated MOSEC cells. Furthermore, we showed that irradiated MOSEC-dox cells was more effective compared to an equivalent dose of doxorubicin in treating MOSEC/luc tumor-bearing mice.</p> <p>Conclusions</p> <p>Thus, the employment of drug-loaded irradiated tumor cells represents a potentially innovative approach for the delivery of chemotherapeutic drugs for the control of ovarian tumors.</p

    Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Get PDF
    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10−9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation

    Levels and values of circulating endothelial progenitor cells, soluble angiogenic factors, and mononuclear cell apoptosis in liver cirrhosis patients

    Get PDF
    BACKGROUND: The roles of circulating endothelial progenitor cell (EPC) and mononuclear cell apoptosis (MCA) in liver cirrhosis (LC) patients are unknown. Moreover, vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α are powerful endogenous substances enhancing EPC migration into circulation. We assessed the level and function of EPCs [CD31/CD34 (E(1)), KDR/CD34 (E(2)), CXCR4/CD34 (E(3))], levels of MCA, VEGF and SDF-1α in circulation of LC patients. METHODS: Blood sample was prospectively collected once for assessing EPC level and function, MCA, and plasma levels of VEGF and SDF-1α using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively, in 78 LC patients and 25 age- and gender-matched healthy controls. RESULTS: Number of EPCs (E(1), E(2), E(3)) was lower (all p < 0.0001), whereas SDF-1α level and MCA were higher (p < 0.001) in study patients compared with healthy controls. Number of EPCs (E(2), E(3)) was higher but MCA was lower (all p < 0.05) in Child's class A compared with Child's class B and C patients, although no difference in VEGF and SDF-1α levels were noted among these patients. Chronic hepatitis B and esophageal varices bleeding were independently, whereas chronic hepatitis C, elevated aspartate aminotransferase (AST), and decompensated LC were inversely and independently correlated with circulating EPC level (all p < 0.03). Additionally, angiogenesis and transwell migratory ability of EPCs were reduced in LC patients than in controls (all p < 0.001). CONCLUSION: The results of this study demonstrated that level, angiogenic capacity, and function of circulating EPCs were significantly reduced, whereas plasma levels of SDF-1α and circulating MCA were substantially enhanced in cirrhotic patients

    Long Noncoding RNAs-Related Diseases, Cancers, and Drugs

    Get PDF
    Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology

    Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement

    Get PDF
    Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake

    High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis

    Get PDF
    SummaryObjectivesThe aim of this study was to delineate the association between high macrophage migration inhibitory factor (MIF) and interleukin 10 (IL-10) levels in the early phase of sepsis and rapidly fatal outcome.MethodsOne hundred and fifty-three adult subjects with the main diagnosis of severe sepsis (including septic shock) admitted directly from the emergency department of two tertiary medical centers and one regional teaching hospital between January 2009 and December 2011, were included prospectively. MIF and IL-10 levels were measured and outcomes were analyzed by Cox regression analysis according to the following outcomes: rapidly fatal outcome (RFO, death within 48h), late fatal outcome (LFO, death between 48h and 28 days), and survival at 28 days.ResultsAmong the three outcome groups, IL-10 levels were significantly higher in the RFO group (p < 0.001) and no significant differences were seen between the LFO and survivor groups. After Cox regression analysis, each incremental elevation of 1000 pg/ml in both IL-10 and MIF was independently associated with RFO in patients with severe sepsis. Each incremental elevation of 1000 pg/ml in IL-10 increased the RFO risk by a factor of 1.312 (95% confidence interval 1.094–1.575; p=0.003); this was the most significant factor leading to RFO in patients with severe sepsis.ConclusionsPatients with RFO exhibited simultaneously high MIF and IL-10 levels in the early phase of severe sepsis. Incremental increases in both IL-10 and MIF levels were associated with RFO in this patient group, and of the two, IL-10 was the most significant factor linked to RFO

    Serum lipid level is not associated with symptomatic intracerebral hemorrhage after intravenous thrombolysis for acute ischemic stroke

    Get PDF
    Background This study assessed whether serum lipid levels are associated with the risk of symptomatic intracerebral hemorrhage (sICH) and functional outcomes in patients with acute ischemic stroke after receiving intravenous thrombolysis. Methods We retrospectively analyzed consecutive ischemic stroke patients who were treated with intravenous tissue plasminogen activator between January 2007 and January 2017. Lipid levels on admission, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride levels, as well as potential predictors of sICH were tested using univariate and multivariate analyses. Results Of the 229 enrolled patients (100 women, aged 68 ± 13 years), 14 developed sICH and 103 (45%) had favorable functional outcomes at 3 months. The patients with sICH more often had diabetes mellitus (71% vs. 26%, P = 0.01) and had more severe stroke (mean National Institutes of Health Stroke Scale [NIHSS] score of 16 vs. 13, P = 0.045). Regarding lipid subtype, total cholesterol, LDL-C, HDL-C, and triglyceride levels were not associated with sICH or functional outcomes. According to the results of multivariate analysis, the frequency of sICH was independently associated with diabetes mellitus (odds ratio [OR] = 6.04; 95% CI [1.31–27.95]; P = 0.02) and the NIHSS score (OR = 1.12; 95% CI [1.02–1.22]; P = 0.01). A higher NIHSS score was independently associated with unfavorable functional outcomes (OR = 0.86; 95% CI [0.81–0.91]; P < 0.001). Conclusions Serum lipid levels on admission, including total cholesterol, LDL-C, HDL-C, and triglyceride levels, were not associated with sICH or 3-month functional outcomes after intravenous thrombolysis for acute ischemic stroke

    Genotype-phenotype correlation in Taiwanese children with diazoxide-unresponsive congenital hyperinsulinism

    Get PDF
    ObjectiveCongenital hyperinsulinism (CHI) is a group of clinically and genetically heterogeneous disorders characterized by dysregulated insulin secretion. The aim of the study was to elucidate genetic etiologies of Taiwanese children with the most severe diazoxide-unresponsive CHI and analyze their genotype-phenotype correlations.MethodsWe combined Sanger with whole exome sequencing (WES) to analyze CHI-related genes. The allele frequency of the most common variant was estimated by single-nucleotide polymorphism haplotype analysis. The functional effects of the ATP-sensitive potassium (KATP) channel variants were assessed using patch clamp recording and Western blot.ResultsNine of 13 (69%) patients with ten different pathogenic variants (7 in ABCC8, 2 in KCNJ11 and 1 in GCK) were identified by the combined sequencing. The variant ABCC8 p.T1042QfsX75 identified in three probands was located in a specific haplotype. Functional study revealed the human SUR1 (hSUR1)-L366F KATP channels failed to respond to intracellular MgADP and diazoxide while hSUR1-R797Q and hSUR1-R1393C KATP channels were defective in trafficking. One patient had a de novo dominant mutation in the GCK gene (p.I211F), and WES revealed mosaicism of this variant from another patient.ConclusionPathogenic variants in KATP channels are the most common underlying cause of diazoxide-unresponsive CHI in the Taiwanese cohort. The p.T1042QfsX75 variant in the ABCC8 gene is highly suggestive of a founder effect. The I211F mutation in the GCK gene and three rare SUR1 variants associated with defective gating (p.L366F) or traffic (p.R797Q and p.R1393C) KATP channels are also associated with the diazoxide-unresponsive phenotype

    Oncologic impact of delay between diagnosis and radical nephroureterectomy

    Get PDF
    PurposeThis study aimed to evaluate the oncological outcome of delayed surgical wait time from the diagnosis of upper tract urothelial carcinoma (UTUC) to radical nephroureterectomy (RNU).MethodsIn this multicenter retrospective study, medical records were collected between 1988 and 2021 from 18 participating Taiwanese hospitals under the Taiwan UTUC Collaboration Group. Patients were dichotomized into the early (≤90 days) and late (&gt;90 days) surgical wait-time groups. Overall survival, disease-free survival, and bladder recurrence-free survival were calculated using the Kaplan–Meier method and multivariate Cox regression analysis. Multivariate analysis was performed using stepwise linear regression.ResultsOf the 1251 patients, 1181 (94.4%) were classifed into the early surgical wait-time group and 70 (5.6%) into the late surgical wait-time group. The median surgical wait time was 21 days, and the median follow-up was 59.5 months. Our study showed delay-time more than 90 days appeared to be associated with worse overall survival (hazard ratio [HR] 1.974, 95% confidence interval [CI] 1.166−3.343, p = 0.011), and disease-free survival (HR 1.997, 95% CI 1.137−3.507, p = 0.016). This remained as an independent prognostic factor after other confounding factors were adjusted. Age, ECOG performance status, Charlson Comorbidity Index (CCI), surgical margin, tumor location and adjuvant systemic therapy were independent prognostic factors for overall survival. Tumor location and adjuvant systemic therapy were also independent prognostic factors for disease-free survival.ConclusionsFor patients with UTUC undergoing RNU, the surgical wait time should be minimized to less than 90 days. Prolonged delay times may be associated with poor overall and disease-free survival
    corecore