15,310 research outputs found
Recommended from our members
Materials Design - Towards a Functionally Graded Electrical Conductor
In this study, we discuss functionally graded (FG) materials as pulsed electrical
conductors. These conductors can be designed to be more efficient and longer lasting by
applying numerical modeling tools. One focus is on limiting the thermal fatigue damage
in conductors caused by very high temperatures that develop during pulse heating. We
have quantified the effect of various grading functions on the pulsed Joule heating
generated and the peak temperature experienced in the conductors of an electromagnetic
launcher by using a 1D numerical code and a state of the art 3D coupled finite element
code, EMAP3D. Because FG materials incorporate applications-tailored compositions,
structures, and dimensions, smoothly graded properties in lateral and longitudinal cross
sections are obtainable. The Solid Freeform Fabrication (SFF) processing approach
allows for architectures with a series of important features. These features include the
selective use of high efficiency conducting materials in the core, preconditioned
conductor/structure interfaces, and built-in features for enhanced cooling where
necessary.Mechanical Engineerin
Evaluation of aerothermal modeling computer programs
Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered
New PbSnTe heterojunction laser diode structures with improved performance
Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
KINETIC EFFECT OF A FOUR-STEP AND STEP-CLOSE APPROACH IN A VOLLEYBALL SPIKE JUMP FOR FEMALE ATHLETES
The purpose of the present study was to investigate the kinetic difference between two different volleyball spike jump techniques: a complete four-step approach and step-close approach. Five female collegiate volleyball players (age: 20.40 ± 1.85, height: 1.80 ± 0.02 m, body weight: 71.71 ± 4.18 kg) who play the middle hitter position were recruited. Each participant performed ten jumps for both four-step and step-close approaches and takeoff from two Kistler force platforms. Results indicated that there is no significant difference (P = .18) of vertical propulsive impulse between the two types of jump. The anterior-posterior (AP) net impulse of the four-step approach was significantly greater than a step-close approach (P < .01). Finally, the contact duration of propulsive phase for step-close technique is significantly greater than four-step approach technique (P < .05)
BELAY TECHNIQUES ON STOP FALLING OF A CLIMBER
The purpose of the present study was to identify the kinematic differences between two popular rock climbing belay techniques used in the United States: brake, under, slide (BUS) and slip, slap, slide (SSS) and their efficiency in stopping the fall of a climber. Five male subjects with no previous belaying experience from two different beginning rock climbing classes were recruited to participate in the study (n = 10). Each subject passed a practical belay test before participating in the study. Data of time to stop the fall of a climber, vertical displacement of the falling climber, maximum negative vertical velocity of the falling climber, and percentage of time each belayer was in the braked position were collected. Results showed that the climber had significant greater falling displacement, longer time to stop, and higher maximum negative velocity when SSS was performed
- …