14 research outputs found

    Prediction of mineral dust properties at mine sites

    No full text
    Predicting the properties of dust generated at mine sites is important for understanding the impact of dust dispersal to the surrounding environment. This chapter presents a new approach to predicting the mineralogical properties of the PM2.5 and PM10 dust fractions. A purpose-built dust resuspension machine was fitted with a size selective sampler to collect dust fractions. Dust particles were collected onto a polycarbonate filter, which was analyzed using a scanning electron microscope (SEM). Backscattered electron (BSE) maps of the polycarbonate surface were imaged and processed to determine dust properties. For a given population of particles, the BSE brightness distribution of the 2-5 and 5-10 µm size fractions were quantified. The mineralogical composition of the dust size fractions were inferred by the BSE brightness as biogenic particles and sulfates (30-50), silicates (60-100), iron silicates and oxides (110-190), and sulfides (>200). The method was validated by comparing laboratory-generated dust fractions with those collected from dust monitoring stations at a tailings repository site. Similar dust composition and size fractions were observed for both laboratory and field samples. Consequently, the purpose-built dust resuspension device and associated laboratory procedures allow the prediction of mineralogical properties of dust at mine sites

    Exercise does not affect stiffness and mineralisation of third metacarpal condylar subarticular calcified tissues in 2 year old thoroughbred racehorses

    No full text
    Impact exercise has a profound effect in increasing volumetric density of epiphyseal bone, as clearly shown in 2 year old thoroughbred racehorses from which we derived the tissue studied in the present investigation. Here, we asked the question whether the fabric-level properties of the mineralised tissues immediately below hyaline articular cartilage which transmit the extra loads are themselves altered in consequence. We therefore studied the nanoindentation elastic modulus and its relationship to the concentration of mineral determined by quantitative backscattered electron imaging in the heavily loaded palmar medial and lateral condyles of the distal third metacarpal bone (Mc3) of 4 untrained and 4 trained 2-year old Thoroughbred racehorses. We found no difference between trained and untrained horses in either subchondral bone or calcified cartilage in the mean stiffness or mineral content or their correlation. Thus neither articular calcified cartilage nor the immediately adjacent subchondral bone were affected by exercise, even though they transmitted the higher load associated with athletic training through to the deeper bone, which itself responded floridly to exercise. Under the circumstances of this experiment and at least in the very small regions studied, therefore, the structure of these two tissues was apparently optimised to function

    Osteomalacic and hyperparathyroid changes in fibrous dysplasia of bone: Core biopsy studies and clinical correlations

    No full text
    Deposition, mineralization, and resorption of FD bone compared with unaffected bone from FD patients was investigated in iliac crest biopsy specimens from 13 patients. Compared with unaffected bone, lesional FD bone seemed to be very sensitive to the effects of PTH and renal phosphate wasting, which respectively bring about hyperparathyroid or osteomalacic changes in the lesional bone. INTRODUCTION: Fibrous dysplasia is a genetic noninherited disease caused by activating mutations of the GNAS1 gene, resulting in the deposition of qualitatively abnormal bone and marrow. This study was designed to learn more about the local processes of bone deposition, mineralization, and resorption within lesional fibrous dysplasia (FD) bone compared with unaffected bone of FD patients. METHODS: Histology, histomorphometry, and quantitative back-scattered electron imaging (qBSE) analysis was conducted on affected and unaffected biopsy specimens from 13 patients and correlated to markers of bone metabolism. RESULTS AND CONCLUSIONS: There was a marked excess of unmineralized osteoid with a nonlamellar structure and a reduced mineral content in mineralized bone within FD lesions (p < 0.001). A negative correlation (p = 0.05) between osteoid thickness (O.Th) and renal tubular phosphate reabsorption (measured as TmP/GFR) was observed for lesional bone, but not for unaffected bone, in which no histological or histomorphometric evidence of osteomalacia was observed in patients with renal phosphate wasting. Histological and histomorphometric evidence of increased bone resorption was variable in lesional bone and correlated with serum levels of parathyroid hormone (PTH). Hyperparathyroidism-related histological changes were observed in fibrous dysplastic bone, but not in the unaffected bone, of patients with elevated serum PTH secondary to vitamin D deficiency. Our data indicate that, compared with unaffected bone, lesional FD bone is very sensitive to the effects of PTH and renal phosphate wasting, which, respectively, bring about hyperparathyroid or osteomalacic changes in the lesional bone. Osteomalacic and hyperparathyroid changes, which emanate from distinct metabolic derangements (which superimpose on the local effects of GNAS1 mutations in bone), influence, in turn, the severity and type of skeletal morbidity in F

    Scanning Electron Microscopy of Bone.

    No full text
    This is a post-peer-review, pre-copyedit version of an article published in Methods in Molecular Biolog. The final authenticated version is available online at: https://doi.org/10.1007/978-1-61779-415-5_24This chapter describes methods for preparing samples of bone and bone cells for scanning electron microscopy (SEM). Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. Samples may have 3D detail in a 3D surface, or be topography-free, polished or micromilled, resin-embedded block surfaces, or resin casts of space compartments surrounded by bone matrix. Methods for cells include fixation, drying, looking at undersides of bone cells, and metallic conductive coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralized matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples. Recommendations are made for the types of resin embedding for BSE SEM imaging. Correlated confocal and SEM imaging of PMMA embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualizing fluorescent mineralizing front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin-embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Control of the vacuum pressure in the SEM sample chamber (now generally available) can be used to eliminate "charging" problems which were common, for example, with large, complex, cancellous bone samples.Horserace Betting Levy Boar

    Scanning electron microscope-based stereo analysis

    Full text link
    In this paper we present a novel technique to analyze stereo images generated from a SEM. The two main features of this technique are that it uses a binary linear programming approach to set up and solve the correspondence problem and that it uses constraints based on the physics of SEM image formation. Binary linear programming is a powerful tool with which to tackle constrained optimization problems, especially in cases that involve matching between one data set and another. We have also analyzed the process of SEM image formation, and present constraints that are useful in solving the stereo correspondence problem. This technique has been tested on many images. Results for a few wafers are included here.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46055/1/138_2005_Article_BF01211849.pd
    corecore