9,515 research outputs found
Influence of an aperture on the performance of a two-degree-of-freedom iron-cored spherical permanent-magnet actuator
Abstract—This paper describes a computational and experimental study of a two-degree-of-freedom spherical permanent-magnet actuator equipped with an iron stator. In particular, it considers the effect of introducing an aperture in the stator core to facilitate access to the armature. The resultant magnetic field distribution in the region occupied by the stator windings, the net unbalanced radial force, and the resulting reluctance torque are determined by three-dimensional magnetostatic finite-element
analysis. The predicted reluctance torque is validated experimentally, and its implications on actuator performance are described
L-branes
The superembedding approach to -branes is used to study a class of
-branes which have linear multiplets on the worldvolume. We refer to these
branes as L-branes. Although linear multiplets are related to scalar multiplets
(with 4 or 8 supersymmetries) by dualising one of the scalars of the latter to
a -form field strength, in many geometrical situations it is the linear
multiplet version which arises naturally. Furthermore, in the case of 8
supersymmetries, the linear multiplet is off-shell in contrast to the scalar
multiplet. The dynamics of the L-branes are obtained by using a systematic
procedure for constructing the Green-Schwarz action from the superembedding
formalism. This action has a Dirac-Born-Infeld type structure for the -form.
In addition, a set of equations of motion is postulated directly in superspace,
and is shown to agree with the Green-Schwarz equations of motion.Comment: revised version, minor changes, references added, 22 pages, no
figures, LaTe
Low-degree multi-spectral p-mode fitting
We combine unresolved-Sun velocity and intensity observations at multiple wavelengths from the Helioseismic and Magnetic Imager and Atmospheric Imaging Array onboard the Solar Dynamics Observatory to investigate the possibility of multi-spectral mode-frequency estimation at low spherical harmonic degree. We test a simple multi-spectral algorithm using a common line width and frequency for each mode and a separate amplitude, background and asymmetry parameter, and compare the results with those from fits to the individual spectra. The preliminary results suggest that this approach may provide a more stable fit than using the observables separately
BPS Solitons in M5-Brane Worldvolume Theory with Constant Three-Form Field
We study BPS solutions for a self-dual string and a neutral string in
M5-brane worldvolume theory with constant three-form field. We further
generalize such solitons to superpose with a calibrated surface. We also study
a traveling wave on a calibrated surface in the constant three-form field
background.Comment: 12 pages, LaTeX, minor correction, added referenc
Catabolism and Deactivation of the Lipid-Derived Hormone Jasmonoyl-Isoleucine
The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development, and immune function. The discovery of jasmonoyl-l-isoleucine (JA-Ile) as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants
The measurement of household socio-economic position in tuberculosis prevalence surveys: a sensitivity analysis.
OBJECTIVE: To assess the robustness of socio-economic inequalities in tuberculosis (TB) prevalence surveys. DESIGN: Data were drawn from the TB prevalence survey conducted in Lusaka Province, Zambia, in 2005-2006. We compared TB socio-economic inequalities measured through an asset-based index (Index 0) using principal component analysis (PCA) with those observed using three alternative indices: Index 1 and Index 2 accounted respectively for the biases resulting from the inclusion of urban assets and food-related variables in Index 0. Index 3 was built using regression-based analysis instead of PCA to account for the effect of using a different assets weighting strategy. RESULTS: Household socio-economic position (SEP) was significantly associated with prevalent TB, regardless of the index used; however, the magnitude of inequalities did vary across indices. A strong association was found for Index 2, suggesting that the exclusion of food-related variables did not reduce the extent of association between SEP and prevalent TB. The weakest association was found for Index 1, indicating that the exclusion of urban assets did not lead to higher extent of TB inequalities. CONCLUSION: TB socio-economic inequalities seem to be robust to the choice of SEP indicator. The epidemiological meaning of the different extent of TB inequalities is unclear. Further studies are needed to confirm our conclusions
Astronomy in the Cloud: Using MapReduce for Image Coaddition
In the coming decade, astronomical surveys of the sky will generate tens of
terabytes of images and detect hundreds of millions of sources every night. The
study of these sources will involve computation challenges such as anomaly
detection and classification, and moving object tracking. Since such studies
benefit from the highest quality data, methods such as image coaddition
(stacking) will be a critical preprocessing step prior to scientific
investigation. With a requirement that these images be analyzed on a nightly
basis to identify moving sources or transient objects, these data streams
present many computational challenges. Given the quantity of data involved, the
computational load of these problems can only be addressed by distributing the
workload over a large number of nodes. However, the high data throughput
demanded by these applications may present scalability challenges for certain
storage architectures. One scalable data-processing method that has emerged in
recent years is MapReduce, and in this paper we focus on its popular
open-source implementation called Hadoop. In the Hadoop framework, the data is
partitioned among storage attached directly to worker nodes, and the processing
workload is scheduled in parallel on the nodes that contain the required input
data. A further motivation for using Hadoop is that it allows us to exploit
cloud computing resources, e.g., Amazon's EC2. We report on our experience
implementing a scalable image-processing pipeline for the SDSS imaging database
using Hadoop. This multi-terabyte imaging dataset provides a good testbed for
algorithm development since its scope and structure approximate future surveys.
First, we describe MapReduce and how we adapted image coaddition to the
MapReduce framework. Then we describe a number of optimizations to our basic
approach and report experimental results comparing their performance.Comment: 31 pages, 11 figures, 2 table
Simulation Study Using a New Type of Sample Variance
We evaluate with simulated data a new type of sample variance for the characterization of frequency stability. The new statistic (referred to as TOTALVAR and its square root TOTALDEV) is a better predictor of long-term frequency variations than the present sample Allan deviation. The statistical model uses the assumption that a time series of phase or frequency differences is wrapped (periodic) with overall frequency difference removed. We find that the variability at long averaging times is reduced considerably for the five models of power-law noise commonly encountered with frequency standards and oscillators
On the symmetries of special holonomy sigma models
In addition to superconformal symmetry, (1,1) supersymmetric two-dimensional
sigma models on special holonomy manifolds have extra symmetries that are in
one-to-one correspondence with the covariantly constant forms on these
manifolds. The superconformal algebras extended by these symmetries close as
W-algebras, i.e. they have field-dependent structure functions. It is shown
that it is not possible to write down cohomological equations for potential
quantum anomalies when the structure functions are field-dependent. In order to
do this it is necessary to linearise the algebras by treating composite
currents as generators of additional symmetries. It is shown that all cases can
be linearised in a finite number of steps, except for G_2 and SU(3). Additional
problems in the quantisation procedure are briefly discussed.Comment: 16 pages. Abstract improved and a few typographical errors correcte
Super-Yang-Mills and M5-branes
We uplift 5-dimensional super-Yang-Mills theory to a 6-dimensional gauge
theory with the help of a space-like constant vector , whose norm
determines the Yang-Mills coupling constant. After the localization of
the 6D gauge theory acquires Lorentzian invariance as well as scale invariance.
We discuss KK states, instantons and the flux quantization. The 6D theory
admits extended solutions like 1/2 BPS `strings' and monopoles.Comment: 15 pages; minor changes, to appear in JHE
- …