127 research outputs found

    On the nonexistence of certain curves of genus two

    Full text link
    We prove that if q is a power of an odd prime then there is no genus-2 curve over F_q whose Jacobian has characteristic polynomial of Frobenius equal to x^4 + (2-2q)x^2 + q^2. Our proof uses the Brauer relations in a biquadratic extension of Q to show that every principally polarized abelian surface over F_q with the given characteristic polynomial splits over F_{q^2} as a product of polarized elliptic curves.Comment: LaTeX, 13 page

    Isogeny classes of abelian varieties with no principal polarizations

    Full text link
    We provide a simple method of constructing isogeny classes of abelian varieties over certain fields k such that no variety in the isogeny class has a principal polarization. In particular, given a field k, a Galois extension l of k of odd prime degree p, and an elliptic curve E over k that has no complex multiplication over k and that has no k-defined p-isogenies to another elliptic curve, we construct a simple (p-1)-dimensional abelian variety X over k such that every polarization of every abelian variety isogenous to X has degree divisible by p^2. We note that for every odd prime p and every number field k, there exist l and E as above. We also provide a general framework for determining which finite group schemes occur as kernels of polarizations of abelian varieties in a given isogeny class. Our construction was inspired by a similar construction of Silverberg and Zarhin; their construction requires that the base field k have positive characteristic and that there be a Galois extension of k with a certain non-abelian Galois group.Comment: 13 pages, AMS-TeX, with updated references. To appear in the volume "Moduli of Abelian Varieties (Texel Island 1999)
    • …
    corecore