1,877 research outputs found

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Complexity Analysis and Efficient Measurement Selection Primitives for High-Rate Graph SLAM

    Get PDF
    Sparsity has been widely recognized as crucial for efficient optimization in graph-based SLAM. Because the sparsity and structure of the SLAM graph reflect the set of incorporated measurements, many methods for sparsification have been proposed in hopes of reducing computation. These methods often focus narrowly on reducing edge count without regard for structure at a global level. Such structurally-naive techniques can fail to produce significant computational savings, even after aggressive pruning. In contrast, simple heuristics such as measurement decimation and keyframing are known empirically to produce significant computation reductions. To demonstrate why, we propose a quantitative metric called elimination complexity (EC) that bridges the existing analytic gap between graph structure and computation. EC quantifies the complexity of the primary computational bottleneck: the factorization step of a Gauss-Newton iteration. Using this metric, we show rigorously that decimation and keyframing impose favorable global structures and therefore achieve computation reductions on the order of r2/9r^2/9 and r3r^3, respectively, where rr is the pruning rate. We additionally present numerical results showing EC provides a good approximation of computation in both batch and incremental (iSAM2) optimization and demonstrate that pruning methods promoting globally-efficient structure outperform those that do not.Comment: Pre-print accepted to ICRA 201

    Acute effects of inspiratory pressure threshold loading upon airway resistance in people with asthma

    Get PDF
    This is the post-print version of the final paper published in Respiratory Physiology & Neurobiology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Large inspiratory pressures may impart stretch to airway smooth muscle and modify the response to deep inspiration (DI) in asthmatics. Respiratory system resistance (Rrs) was assessed in response to 5 inspiratory manoeuvres using the forced oscillation technique: (a) single unloaded DI; (b) single DI at 25 cmH2O; (c) single DI at 50% maximum inspiratory mouth pressure [MIP]; (d) 30 DIs at 50% MIP; and (e) 30 DIs at 50% MIP with maintenance of normocapnia. Rrs increased after the unloaded DI and the DI at 25 cmH2O but not after a DI at 50% MIP (3.6 ± 1.6 hPa L s−1 vs. 3.6 ± 1.5 hPa L s−1; p = 0.95), 30 DIs at 50% MIP (3.9 ± 1.5 hPa L s−1 vs. 4.2 ± 2.0 hPa L s−1; p = 0.16) or 30 DIs at 50% MIP under normocapnic conditions (3.9 ± 1.5 hPa L s−1 vs. 3.9 ± 1.5 hPa L s−1; p = 0.55). Increases in Rrs in response to DI were attenuated after single and multiple loaded breaths at 50% MIP

    Progestins and Preterm Birth

    Get PDF

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Extended Bell and Stirling numbers from hypergeometric exponentiation

    Get PDF
    Exponentiating the hypergeometric series 0FL(1,1,...,1;z), L = 0,1,2,..., furnishes a recursion relation for the members of certain integer sequences bL(n), n = 0,1,2,.... For L >= 0, the bL(n)'s are generalizations of the conventional Bell numbers, b0(n). The corresponding associated Stirling numbers of the second kind are also investigated. For L = 1 one can give a combinatorial interpretation of the numbers b1(n) and of some Stirling numbers associated with them. We also consider the L>1 analogues of Bell numbers for restricted partitions

    Anisotropic Universe in f(Q,T)f(Q,T) gravity, a novel study

    Full text link
    f(Q,T)f(Q,T) theory of gravity is very recently proposed to incorporate within the action Lagrangian, the trace TT of the energy-momentum tensor along with the non-metricity scalar QQ. The cosmological application of this theory in a spatially flat isotropic and homogeneous Universe is well-studied. However, our Universe is not isotropic since the Planck era and therefore to study a complete evolution of the Universe we must investigate the f(Q,T)f(Q,T) theory in a model with a small anisotropy. This motivated us to presume a locally rotationally symmetric (LRS) Bianchi-I spacetime and derive the motion equations. We analyse the model candidate f(Q,T)=αQn+1+βTf(Q,T)=\alpha Q^{n+1}+\beta T, and to constrain the parameter nn, we employ the statistical Markov chain Monte Carlo (MCMC) method with the Bayesian approach using two independent observational datasets, namely, the Hubble datasets, and Type Ia supernovae (SNe Ia) datasets.Comment: AOP accepted versio

    Synaptic bouton sizes are tuned to best fit their physiological performances : poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011, Stockholm, Sweden, 23 - 28 July 2011

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues

    Molecular identification and phylogenetic analysis of Pseudoperonospora cubensis isolates in Peninsula Malaysia

    Get PDF
    Thirteen isolates of Pseudoperonospora cubensis, the causal agent of downy mildew, were collected from cucurbit fields in five states of the western part of Peninsular Malaysia during its growing season between November 2008 and March 2009. The host range of these isolates was determined previously using leaf disc assay and the results indicated that there were 12 pathotypes among these isolates. The objective of this study was to analyze the 13 isolates for phylogenetic relationship using internal transcribed spacers (ITS) of ribosomal DNA (rDNA) and mitochondrial COX-II regions. A high sequence similarity among the 13 isolates and similar sequences from GenBank were detected in ITS (>99%) and COX-II (>98%) regions. Phylogenetic analysis of the 13 isolates based on Minimum Evolution method performed on ITS and COX-II regions revealed five and three groupings, respectively. However, no relationship was found between the phylogenetic groupings using both genes and pathotypes in this study
    corecore