449 research outputs found

    A simple finite volume method for adaptive viscous liquids

    Get PDF
    © Christopher Batty & Ben Houston | ACM 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SCA '11: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, http://dx.doi.org/10.1145/2019406.2019421We present the first spatially adaptive Eulerian fluid animation method to support challenging viscous liquid effects such as folding, coiling, and variable viscosity. We propose a tetrahedral node-based embedded finite volume method for fluid viscosity, adapted from popular techniques for Lagrangian deformable objects. Applied in an Eulerian fashion with implicit integration, this scheme stably and efficiently supports high viscosity fluids while yielding symmetric positive definite linear systems. To integrate this scheme into standard tetrahedral mesh-based fluid simulators, which store normal velocities on faces rather than velocity vectors at nodes, we offer two methods to reconcile these representations. The first incorporates a mapping between different degrees of freedom into the viscosity solve itself. The second uses a FLIP-like approach to transfer velocity data between nodes and faces before and after the linear solve. The former offers tighter coupling by enabling the linear solver to act directly on the face velocities of the staggered mesh, while the latter provides a sparser linear system and a simpler implementation. We demonstrate the effectiveness of our approach with animations of spatially varying viscosity, realistic rotational motion, and viscous liquid buckling and coiling

    New Structures and their Applications to Variants of Zero Forcing and Propagation Time

    Full text link
    We introduce a generalization of the concept of a chronological list of forces, called a relaxed chronology. This concept is used to introduce a new way of formulating the standard zero forcing process, which we refer to as parallel increasing path covers, or PIPs. The combinatorial properties of PIPs are utilized to identify bounds comparing standard zero forcing propagation time to positive semidefinite propagation time. A collection of paths within a set of PSD forcing trees, called a path bundle, is used to identify the PSD forcing analog of the reversal of a standard zero forcing process, as well as to draw a connection between PSD forcing and rigid-linkage forcing

    Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids

    Get PDF
    This is the peer reviewed version of the following article: Batty, C., Xenos, S., & Houston, B. (2010, May). Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Computer Graphics Forum (Vol. 29, No. 2, pp. 695-704). Oxford, UK: Blackwell Publishing Ltd., which has been published in final form at https://doi.org/10.1111/j.1467-8659.2009.01639.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.When simulating fluids, tetrahedral methods provide flexibility and ease of adaptivity that Cartesian grids find difficult to match. However, this approach has so far been limited by two conflicting requirements. First, accurate simulation requires quality Delaunay meshes and the use of circumcentric pressures. Second, meshes must align with potentially complex moving surfaces and boundaries, necessitating continuous remeshing. Unfortunately, sacrificing mesh quality in favour of speed yields inaccurate velocities and simulation artifacts. We describe how to eliminate the boundary‐matching constraint by adapting recent embedded boundary techniques to tetrahedra, so that neither air nor solid boundaries need to align with mesh geometry. This enables the use of high quality, arbitrarily graded, non‐conforming Delaunay meshes, which are simpler and faster to generate. Temporal coherence can also be exploited by reusing meshes over adjacent timesteps to further reduce meshing costs. Lastly, our free surface boundary condition eliminates the spurious currents that previous methods exhibited for slow or static scenarios. We provide several examples demonstrating that our efficient tetrahedral embedded boundary method can substantially increase the flexibility and accuracy of adaptive Eulerian fluid simulation

    The impact of gender ideologies on men's and women's desire for a traditional or non-traditional partner

    Get PDF
    Two studies examine preferences for a long-term partner who conforms to traditional or non- traditional gender roles. The studies both demonstrate a link between benevolent sexism and preference for a traditional partner. However, Study 1 also demonstrates a strong preference among women for a non-traditional partner. We measured ambivalent sexist ideologies before introducing participants to either a stereotypically traditional or stereotypically non-traditional character of the opposite sex. In Study 1, women high in benevolence toward men reported a preference for a traditional man when compared to women low in benevolence toward men. We found no such link for hostility toward men. Study 2 showed that men high in benevolent sexism preferred a traditional woman more than men low in benevolent sexism. Again, this was not the case for hostile sexism. The studies provide evidence using both the Ambivalence Toward Men Inventory and the Ambivalent Sexism Inventory and demonstrate a relationship between benevolent ideology and partner choice that adds to a literature on partner preference which has to date been focused on preference dimensions of attractiveness and resources

    Kilohertz-driven Bose-Einstein condensates in optical lattices

    Full text link
    We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.Comment: 36 pages, 3 figures, Advance Atomic Molecular Physics in pres

    Improving response rates using a monetary incentive for patient completion of questionnaires: an observational study

    Get PDF
    Background: Poor response rates to postal questionnaires can introduce bias and reduce the statistical power of a study. To improve response rates in our trial in primary care we tested the effect of introducing an unconditional direct payment of 5 pound for the completion of postal questionnaires. Methods: We recruited patients in general practice with knee problems from sites across the United Kingdom. An evidence-based strategy was used to follow-up patients at twelve months with postal questionnaires. This included an unconditional direct payment of 5 pound to patients for the completion and return of questionnaires. The first 105 patients did not receive the 5 pound incentive, but the subsequent 442 patients did. We used logistic regression to analyse the effect of introducing a monetary incentive to increase the response to postal questionnaires. Results: The response rate following reminders for the historical controls was 78.1% ( 82 of 105) compared with 88.0% ( 389 of 442) for those patients who received the 5 pound payment (diff = 9.9%, 95% CI 2.3% to 19.1%). Direct payments significantly increased the odds of response ( adjusted odds ratio = 2.2, 95% CI 1.2 to 4.0, P = 0.009) with only 12 of 442 patients declining the payment. The incentive did not save costs to the trial - the extra cost per additional respondent was almost 50 pound. Conclusion: The direct payment of 5 pound significantly increased the completion of postal questionnaires at negligible increase in cost for an adequately powered study

    On the critical nature of plastic flow: one and two dimensional models

    Full text link
    Steady state plastic flows have been compared to developed turbulence because the two phenomena share the inherent complexity of particle trajectories, the scale free spatial patterns and the power law statistics of fluctuations. The origin of the apparently chaotic and at the same time highly correlated microscopic response in plasticity remains hidden behind conventional engineering models which are based on smooth fitting functions. To regain access to fluctuations, we study in this paper a minimal mesoscopic model whose goal is to elucidate the origin of scale free behavior in plasticity. We limit our description to fcc type crystals and leave out both temperature and rate effects. We provide simple illustrations of the fact that complexity in rate independent athermal plastic flows is due to marginal stability of the underlying elastic system. Our conclusions are based on a reduction of an over-damped visco-elasticity problem for a system with a rugged elastic energy landscape to an integer valued automaton. We start with an overdamped one dimensional model and show that it reproduces the main macroscopic phenomenology of rate independent plastic behavior but falls short of generating self similar structure of fluctuations. We then provide evidence that a two dimensional model is already adequate for describing power law statistics of avalanches and fractal character of dislocation patterning. In addition to capturing experimentally measured critical exponents, the proposed minimal model shows finite size scaling collapse and generates realistic shape functions in the scaling laws.Comment: 72 pages, 40 Figures, International Journal of Engineering Science for the special issue in honor of Victor Berdichevsky, 201
    • 

    corecore