433 research outputs found

    Public Opinions of Unmanned Aerial Technologies in 2014 to 2019: A Technical and Descriptive Report

    Get PDF
    The primary purpose of this report is to provide a descriptive and technical summary of the results from similar surveys administered in fall 2014 (n = 576), 2015 (n = 301), 2016 (ns = 1946 and 2089), and 2018 (n = 1050) and summer 2019 (n = 1300). In order to explore a variety of factors that may impact public perceptions of unmanned aerial technologies (UATs), we conducted survey experiments over time. These experiments randomly varied the terminology (drone, aerial robot, unmanned aerial vehicle (UAV), unmanned aerial system (UAS)) used to describe the technology, the purposes of the technology (for economic, environmental, or security goals), the actors (public or private) using the technology, the technology’s autonomy (fully autonomous, partially autonomous, no autonomy), and the framing (promotion or prevention) used to describe the technology’s purpose. Initially, samples were recruited through Amazon’s Mechanical Turk, required to be Americans, and paid a small amount for participation. In 2016 we also examined a nationally representative samples recruited from Qualtrics panels. After 2016 we only used nationally representative samples from Qualtrics. Major findings are reported along with details regarding the research methods and analyses

    Vortex Sheet Sensitivity to Low-Level Vertical Shear and Airmass Temperature Perturbation

    Get PDF
    A theoretical, numerical-modeling-based examination of the sensitivity of vortex sheets along airmass boundaries to the following three characteristics is presented: 1) boundary-normal component of the vertical wind shear, 2) boundary-parallel component of the vertical wind shear, and 3) temperature perturbation within the parent air mass of the boundary. The overall aim of this work is to advance understanding of the sensitivity of micro-α- tomeso-γ-scale vortex generation along airmass boundaries to the ambient environment. Density currents are simulated in a 2D domain that does not allow baroclinic generation of near-surface vertical vorticity (ζns) with parameterized latent heating for convection initiated at the associated airmass boundary and Coriolis turned on. Despite the absence of baroclinically generated ζns, with Coriolis turned on and without any boundary-parallel shear, ζns more than two orders of magnitude larger than planetary vorticity is generated along the boundary and located within the cold air. The magnitude of ζns is found to increase with increasing boundary-normal shear with statistically significant intra-experiment separations. Near-surface vertical vorticity ζns is found to scale inversely with boundary-parallel shear with a transition to negative leading-edge ζns in several of the larger boundary-normal shear simulations. An inverse and statistically significant relationship is found between ζns and the temperature perturbation within the parent air mass of the boundary (Δθ), and is a direct consequence of the dependence of boundary propagation speed on Δθ

    Observational Analysis of the 27 May 1997 Central Texas Tornadic Event. Part II: Tornadoes

    Get PDF
    The 27 May 1997 central Texas tornadic event has been investigated in a two-part observational study. As demonstrated in Part I, the 1D environment associated with this event was unfavorable for significant (≥F2) tornadoes. Yet, the storm complex produced at least six significant tornadoes, including one rated F5 (the Jarrell, Texas, tornado). The purpose of this article is to examine the spatiotemporal interrelationships between tornadoes, preexisting boundaries, antecedent low-level mesocyclones, convective cells, and midlevel mesocyclones. It is shown that each of the six observed tornadoes that produced greater than F0 damage formed along the storm-generated gust front, not along preexisting boundaries. Half of these tornadoes formed on the distorted gust front, the portion of the storm-generated gust front whose orientation was deformed largely by the horizontal shear across the cold front. The remaining three tornadoes developed at the gust front cusp (the persistent gust front inflection located at the northeast end of the gust front distortion). Unlike the tornadoes south of the gust front cusp, these tornadoes are found to be associated with antecedent mesocyclones located in the low levels above the boundary layer. Furthermore, these mesocyclonic tornadoes are found to be larger and more destructive than the three nonmesocyclonic tornadoes. The formation of the Jarrell tornado is found to occur as a nearly stationary convective cell became collocated with a south-southwestward-moving low-level mesocyclone near the gust front cusp—a behavior that resembles the formation of nonsupercell tornadoes. It is argued that the back-building propagation/maintenance of the storm complex enabled this juxtaposition of convective cells with vorticity along the distorted gust front and may have therefore enabled tornado formation. Each of the convective cells without midlevel mesocyclones was found to remain farther from the boundaries than the mesocyclonic cells. Since the cells nearest to the boundaries were longer lived than the remaining cells, it is argued that cells near the boundaries were mesocyclonic because the boundaries yielded cells that were more likely to support temporally coherent midlevel rotation

    Design and Evaluation of Sensor Housing for Boundary Layer Profiling Using Multirotors

    Get PDF
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions

    Design and Evaluation of Sensor Housing for Boundary Layer Profiling Using Multirotors

    Get PDF
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions

    Measuring atomic NOON-states and using them to make precision measurements

    Full text link
    A scheme for creating NOON-states of the quasi-momentum of ultra-cold atoms has recently been proposed [New J. Phys. 8, 180 (2006)]. This was achieved by trapping the atoms in an optical lattice in a ring configuration and rotating the potential at a rate equal to half a quantum of angular momentum . In this paper we present a scheme for confirming that a NOON-state has indeed been created. This is achieved by spectroscopically mapping out the anti-crossing between the ground and first excited levels by modulating the rate at which the potential is rotated. Finally we show how the NOON-state can be used to make precision measurements of rotation.Comment: 14 preprint pages, 7 figure

    Public Perceptions of Drones Used for Weather-Related Purposes

    Get PDF
    The CLOUDMAP Team -- Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics. An EPSCOR grant funded by NSF Responsible Innovation & Trust Public Perception Studies to Date Some Major Findings • You can call a drone whatever you want without changing people’s support • Purpose matters • Trust matters… And More Findings • Sensemaking through pop culture, lack of knowledge, questioning, and purpose. • Hopes for societal benefits such as research technology and improved public safety (reduced risk, better forecasting). • Concerns for privacy, public & airspace safety, and pollution. • Recommendations for collaborative regulation creation for safety and security, as well as privacy. Next Steps • Studies 1&2: Wave 3 ▫ MTurk and representative sample • Study 3 Study 4 ▫ Representative sample survey experiment ▫ Varying: Purpose, actor, rural/urban ▫ Examining: Support, trust ▫ Moderation by: Knowledg

    EVOLUTION OF A LONG-TRACK VIOLENT TORNADO WITHIN A SIMULATED SUPERCELL

    Get PDF
    Utilizing state-of-the-art visualization and analysis software, we explore the evolution of a violent tornado within a simulated supercell thunderstorm and describe associated computational challenges

    A Neutrino Detector Design for Safeguarding Small Modular Reactors

    Full text link
    Nuclear reactors have long been a favored source for antineutrino measurements for estimates of power and burnup. With appropriate detector parameters and background rejection, an estimate of the reactor power can be derived from the measured antineutrino event rate. Antineutrino detectors are potentially attractive as a safeguards technology that can monitor reactor operations and thermal power from a distance. Advanced reactors have diverse features that may present challenges for current safeguards methods. By comparison, neutrino detectors offer complementary features, including a remote, continuous, unattended, and near-real-time monitoring capability, that may make them useful for safeguarding certain classes of advanced reactors. This study investigates the minimum depth and size of an antineutrino detector for a SMR to meet safeguards needs for advanced reactors. Extrapolating performance from several prior reactor antineutrino experiments, this study uses an analytical approach to develop a possible design for a remote antineutrino-based monitoring device
    • …
    corecore