974 research outputs found

    Continuing Competence in Selected Health Care Professions

    Get PDF
    Health services professionals are confronting the challenge of maintaining and improving competence over the course of lengthy careers in diverse practice specialties. This article reviews the efforts of a selection of health care professions to ensure lifetime competence and reviews some of the challenges encountered in these efforts. Although each profession has its own issues, significant generic questions are common to all

    Iginio Tansini revisited

    Get PDF
    The origin of the muscolocutaneous latissimus dorsi flap dates back to 1906 when Igino Tansini, an Italian surgeon, described a procedure to reconstruct the mastectomy defect. After a detailed study of Tansini's original description and drawings, new insights about the pedicle of its compound flap have been found, showing that it has the same pedicle of the scapular flap. In the end, Tansini's flap should be more correctly considered as a compound musculocutaneous scapular flap

    Iginio Tansini revisited

    Get PDF
    The origin of the muscolocutaneous latissimus dorsi flap dates back to 1906 when Igino Tansini, an Italian surgeon, described a procedure to reconstruct the mastectomy defect. After a detailed study of Tansini's original description and drawings, new insights about the pedicle of its compound flap have been found, showing that it has the same pedicle of the scapular flap. In the end, Tansini's flap should be more correctly considered as a compound musculocutaneous scapular flap

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated

    Identification, replication and characterization of epigenetic remodelling in the aging genome:A cross population analysis

    Get PDF
    Aging is a complex biological process regulated by multiple cellular pathways and molecular mechanisms including epigenetics. Using genome-wide DNA methylation data measured in a large collection of Scottish old individuals, we performed discovery association analysis to identify age-methylated CpGs and replicated them in two independent Danish cohorts. The double-replicated CpGs were characterized by distribution over gene regions and location in relation to CpG islands. The replicated CpGs were further characterized by involvement in biological pathways to study their functional implications in aging. We identified 67,604 age-associated CpG sites reaching genome-wide significance of FWE

    A framework for quantifying the magnitude and variability of community responses to global change drivers

    Get PDF
    A major challenge in global change ecology is to predict the trajectory and magnitude of community change in response to global change drivers (GCDs). Here, we present a new framework that not only increases the predictive power of individual studies, but also allows for synthesis across GCD studies and ecosystems. First, we suggest that by quantifying community dissimilarity of replicates both among and within treatments, we can infer both the magnitude and predictability of community change, respectively. Second, we demonstrate the utility of integrating rank abundance curves with measures of community dissimilarity to understand the species-level dynamics driving community changes and propose a series of testable hypotheses linking changes in rank abundance curves with shifts in community dissimilarity. Finally, we review six case studies that demonstrate how our new conceptual framework can be applied. Overall, we present a new framework for holistically predicting community responses to GCDs that has broad applicability in this era of unprecedented global change and novel environmental conditions

    The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age

    Get PDF
    The measurement of biological age as opposed to chronological age is important to allow the study of factors that are responsible for the heterogeneity in the decline in health and function ability among individuals during aging. Various measures of biological aging have been proposed. Frailty indices based on health deficits in diverse body systems have been well studied, and we have documented the use of a frailty index (FI(34)) composed of 34 health items, for measuring biological age. A different approach is based on leukocyte DNA methylation. It has been termed DNA methylation age, and derivatives of this metric called age acceleration difference and age acceleration residual have also been employed. Any useful measure of biological age must predict survival better than chronological age does. Meta-analyses indicate that age acceleration difference and age acceleration residual are significant predictors of mortality, qualifying them as indicators of biological age. In this article, we compared the measures based on DNA methylation with FI(34). Using a well-studied cohort, we assessed the efficiency of these measures side by side in predicting mortality. In the presence of chronological age as a covariate, FI(34) was a significant predictor of mortality, whereas none of the DNA methylation age-based metrics were. The outperformance of FI(34) over DNA methylation age measures was apparent when FI(34) and each of the DNA methylation age measures were used together as explanatory variables, along with chronological age: FI(34) remained significant but the DNA methylation measures did not. These results indicate that FI(34) is a robust predictor of biological age, while these DNA methylation measures are largely a statistical reflection of the passage of chronological time

    Seasonal changes in eastern hemlock (\u3cem\u3eTsuga canadensis\u3c/em\u3e) foliar chemistry

    Get PDF
    Eastern hemlock (Tsuga canadensis (L.) Carriére; hemlock) is an eastern North American conifer threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). Changes in foliar terpenes and phenolics were evaluated in new (current year growth) and mature (1-year old growth) hemlock needles during the growing season and into plant dormancy. From April through September, foliar concentrations of non-volatile soluble phenolics, condensed tannins, lignin, mono- and sesquiterpenes α-pinene, camphene, isobornyl acetate, and diterpene resin were quantified. After September, additional analyses of metabolites that continued to differ significantly in new versus mature foliage were carried out. Total soluble phenolic concentration and condensed tannin concentration in new foliage remained low relative to mature foliage throughout the growing season and converged in December. Lignin concentration in new foliage converged with that of mature foliage by July. Concentrations of α-pinene, camphene, isobornyl acetate, and diterpene resin in new foliage converged with mature foliage within one month of budbreak. The convergence of terpene concentrations in new and mature foliage suggests that these metabolites may play a role in herbivore defense during the peak growing season. Conversely, soluble phenolics, including condensed tannins, may defend foliage from herbivory outside of the spring growth period
    • …
    corecore