49 research outputs found

    Mid-Infrared Spectral Measures of Star-Formation and AGN Activity in Normal Galaxies

    Get PDF
    We investigate the use of MIR PAH bands, continuum and emission lines as probes of star-formation and AGN activity in a sample of 100 'normal' and local (z~0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph (IRS) as part of the Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from the UV to the FIR and optical spectroscopy. The continuum and features were extracted using PAHFIT (Smith et al. 2007), a decomposition code which we find to yield PAH equivalent widths up to ~30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low metallicity galaxies or ULIRGs), we find significant variations in PAH, continuum and emission line properties and systematic trends between these MIR properties and optically derived physical properties such as age, metallicity and radiation field hardness. We revisit the diagnostic diagram relating PAH equivalent widths and [Ne II]12.8micrometers/[O IV]25.9micrometers line ratios and find it to be in much better agreement with the standard optical star-formation/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and with poorer statistics, of the neon emission lines and molecular hydrogen lines, are found to be tightly correlated to the total IR luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the total IR luminosity, these individual components can be used to estimate dust attenuation in the UV and in Halpha lines based on energy balance arguments. We also propose average scaling relations between these components and dust corrected, Halpha derived star-formation rates.Comment: Accepted for publication in Ap

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Preliminary Findings of a Randomized Trial of Non-Pharmaceutical Interventions to Prevent Influenza Transmission in Households

    Get PDF
    Background: There are sparse data on whether non-pharmaceutical interventions can reduce the spread of influenza. We implemented a study of the feasibility and efficacy of face masks and hand hygiene to reduce influenza transmission among Hong Kong household members. Methodology/Principal Findings: We conducted a cluster randomized controlled trial of households (composed of at least 3 members) where an index subject presented with influenza-like-illness of <48 hours duration. After influenza was confirmed in an index case by the QuickVue Influenza A+B rapid test, the household of the index subject was randomised to 1) control or 2) surgical face masks or 3) hand hygiene. Households were visited within 36 hours, and 3, 6 and 9 days later. Nose and throat swabs were collected from index subjects and all household contact at each home visit and tested by viral culture. The primary outcome measure was laboratory culture confirmed influenza in a household contact; the secondary outcome was clinically diagnosed influenza (by self-reported symptoms). We randomized 198 households and completed follow up home visits in 128; the index cases in 122 of those households had laboratory-confirmed influenza. There were 21 household contacts with laboratory confirmed influenza corresponding to a secondary attack ratio of 6%. Clinical secondary attack ratios varied from 5% to 18% depending on case definitions. The laboratory-based or clinical secondary attack ratios old not significantly differ across the intervention arms. Adherence to interventions was variable. Conclusions/Significance: The secondary attack ratios were lower than anticipated, and lower than reported in other countries, perhaps due to differing patterns of susceptibility, lack of significant antigenic drift in circulating influenza virus strains recently, and/or issues related to the symptomatic recruitment design. Lessons learn from this pilot have informed changes for the main study in 2008.published_or_final_versio

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    corecore