110 research outputs found

    M-integral analysis for cracks in a viscoplastic material with extended finite element method

    Get PDF
    The M-integral can be used to quantify complex damage in materials subjected to mechanical deformation. However, the effect of viscoplasticity on the damage level associated with the M-integral has not been studied yet. In this paper, the variation of the M-integral associated with viscoplastic deformation was investigated numerically using a user-defined material subroutine. Effects of creep deformation and loading rate on the M-integral were also evaluated. In particular, the association of crack growth with the evolution of the M-integral was captured by the extended finite element method for different crack configurations. It was found that viscoplastic deformation has a great effect on the damage evolution of viscoplastic materials characterized by the M-integral. Crack growth leads to an increase of the M-integral, indicating progressive damage of the materials. Concerning the secondary cracks formed around a major crack, the results show that the M-integral is highly dependent on the numbers and locations of those secondary cracks. Shielding effect is mostly evident for microcracks with centres located just behind or vertically in line with the major crack tip. With the increasing number of microcracks, the shielding effect tends to decrease as reflected by the increasing M-integral value

    Dark Septate Endophytes Isolated From Wild Licorice Roots Grown in the Desert Regions of Northwest China Enhance the Growth of Host Plants Under Water Deficit Stress

    Get PDF
    This study aimed to explore dark septate endophytes (DSE) that may improve the cultivation of medicinal plants in arid ecosystems. We isolated and identified eight DSE species (Acremonium nepalense, Acrocalymma vagum, Alternaria chartarum, Alternaria chlamydospora, Alternaria longissima, Darksidea alpha, Paraphoma chrysanthemicola, and Preussia terricola) colonizing the roots of wild licorice (Glycyrrhiza uralensis) in the desert areas of northwest China. Moreover, we investigated the osmotic stress tolerance of the DSE using pure culture, along with the performance of licorice plants inoculated with the DSE under drought stress in a growth chamber, respectively. Here, five species were first reported in desert habitats. The osmotic-stress tolerance of DSE species was highly variable, A. chlamydospora and P. terricola increased the total biomass and root biomass of the host plant. All DSE except A. vagum and P. chrysanthemicola increased the glycyrrhizic acid content; all DSE except A. chartarum increased the glycyrrhizin content under drought stress. DSE × watering regimen improved the glycyrrhizic acid content, soil organic matter, and available nitrogen. Structural equation model analysis showed that DSE × watering regimen positively affected soil organic matter, and total biomass, root length, glycyrrhizic acid, and glycyrrhizin (Shapotou site); and positively affected soil organic matter, available phosphorus, and glycyrrhizin (Minqin site); and positively affected the root length (Anxi site). DSE from the Shapotou site accounted for 8.0, 13.0, and 11.3% of the variations in total biomass, root biomass, and active ingredient content; DSE from the Minqin site accounted for 6.6 and 8.3% of the variations in total biomass and root biomass; DSE from the Anxi site accounted for 4.2 and 10.7% of the variations in total biomass and root biomass. DSE × watering regimen displayed a general synergistic effect on plant growth and active ingredient contents. These findings suggested that the DSE–plant interactions were affected by both DSE species and DSE originating habitats. As A. chlamydospora and P. terricola positively affected the total biomass, root biomass, and active ingredient content of host plants under drought stress, they may have important uses as promoters for the cultivation of licorice in dryland agriculture

    Key technology and application of pre-stressed anchor to improve pre-tightening force

    Get PDF
    As one of the key parameters of bolt support, pre-tightening force plays a decisive role in active support. Domestic and foreign research shows that increasing the pre-tightening force of bolt can reduce the occurrence of roof fall accidents, so as to effectively improve the pre-tightening force of bolt and reduce the occurrence of broken anchor and lost anchor. The rolling anti-friction washer and tension-compression separation nut were developed. The torque-preload conversion relationship of the rolling anti-friction washer and tension-compression separation nut was studied by laboratory experiment, theoretical analysis and numerical calculation. The mechanical response characteristics of the common nut and tension-compression separation nut during pre-tightening process were studied. The research shows that about 60% of the torque is consumed by the friction between the bolt nut and the tray during the pre-tightening process of the ordinary bolt. The torque consumed by the friction can be reduced to 25% by using the rolling anti-friction gasket, and the torque-pretightening force conversion rate is increased by about 2 times. The stress of the internal thread pair of the ordinary bolt nut decreases exponentially along the axial direction away from the extrusion surface. The stress value of the first three rings in the nut is larger, and the stress concentration occurs obviously in this range, which is the dangerous surface of the bolt body fracture. The stress of the thread pair is evenly distributed after using the tension-compression separation nut, which eliminates the stress concentration phenomenon and the thread deformation is coordinated. The high pre-tightening force uniform bearing bolt was invented by integrating rolling friction reducing gasket, tension-compression separation nut, etc., which can increase the pre-tightening force to 2.5 times, eliminate the phenomenon that the bolt is easy to break from the thread section, and achieve good application effect in Zhuji Mine of Huainan Mining Area

    Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium

    Get PDF
    Background Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Results Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Conclusion Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets

    Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Get PDF
    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica

    A Novel Recombinant Peste des Petits Ruminants-Canine Adenovirus Vaccine Elicits Long-Lasting Neutralizing Antibody Response against PPR in Goats

    Get PDF
    BACKGROUND: Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. CONCLUSIONS/SIGNIFICANCE: This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach)
    • …
    corecore