113 research outputs found
Low O2 and high CO2 in LLC-PK1 cells culture mimics renal ischemia-induced apoptosis
Ischemia, absence or loss of blood flow in organs always presents as a dual phenomenon: tissue oxygen deficit and CO2 excess (hypercapnia). Commonly hypoxic cell culture models kept CO2 at normal nonischemic values. We report a study of apoptosis in an in vitro model of renal hypoxia that mimics in vivo tissue gas atmosphere composition determined during experimental ischemia in rat kidney (low O2 plus high CO 2). Renal tubular LLC-PK1 cell were transiently exposed to hypoxia, to hypercapnia or to both conditions (simulated ischemia). Exposure to simulated ischemic atmosphere, but not to low O2 or high CO2 alone, induced cell apoptosis in vitro. This suggests that ischemia-induced apoptosis in vivo would be dependent on the natural, joint action of hypoxia and hypercapnia. This should be taken into account in cell culture studies that would like to mimic in vivo ischemic conditions. © 2004 USCAP, Inc. All rights reserved.This work was supported by EU Grant QLK6-CT-2000-00064, SAF 2000/3090-CE0057 and FISS 01/1691Peer Reviewe
Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury
Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury.The authors would like to thank M Ángeles Muñoz for her excellent technical support. This work was supported by grants from FIS PI12/00720 from Instituto de Salud Carlos III cofunded by FEDER funds/European Regional Development Fund (ERDF)-a way to buid Europe- and SENEFRO (awarded to AS) and SAF 2012-39947-02 (awarded to GH). MJ was supported by a grant from Fritz Thyssen Stiftung (Az.10.12.2.156) and a grant from University of Frankfurt (Focus Line B) and AS is supported by Miguel Servet II contracting system (CPII 14/00026).Peer Reviewe
CPT1a gene expression reverses the inflammatory and anti-phagocytic effect of 7-ketocholesterol in RAW264.7 macrophages
Background: macrophage are specialized cells that contributes to the removal of detrimental contents via phagocytosis. Lipid accumulation in macrophages, whether from phagocytosis of dying cells or from circulating oxidized low-density lipoproteins, alters macrophage biology and functionality. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. However, the potential of CPT1a to activate macrophage phagocytic function have not been elucidated. Methods: using a murine macrophage cell line, RAW264.7, we determine if intracellular accumulation of 7-ketocholesterol (7-KC) modulates macrophage phagocytic function through CPT1a gene expression. In addition, the effects of CPT1a genetic modification on macrophage phenotype and phagocytosis has been studied. Results: our results revealed that CPT1a gene expression decreased by the accumulation of 7-KC at the higher dose of 7-KC. This was concomitant with an impair ability to phagocytize bioparticles and an inflammatory phenotype. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC-laden macrophages, increased the gene expression of CPT1a, diminished the gene expression of the inflammatory marker iNOS and restored macrophage phagocytosis. Furthermore, CPT1a Knockdown per se was detrimental for macrophage phagocytosis whereas transcriptional activation of CPT1a heightened the uptake of bioparticles. Conclusions: altogether, our findings indicate that downregulation of CPT1a by lipid content modulates macrophage phagocytosis and inflammatory phenotype
Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury
Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury
Exploring macrophage cell therapy on diabetic kidney disease
Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐ NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytoki nes, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu
Mitochondrial Transplantation Enhances Phagocytic Function and Decreases Lipid Accumulation in Foam Cell Macrophages
Macrophages have mechanisms for eliminating cholesterol from cells. If excess cholesterol is not eliminated from the macrophages, then transformation into a foam cell may occur. Foam cells are a hallmark of the atherosclerotic lesions that contribute to the development and rupture of atherosclerotic plaques. Several in vitro and in vivo studies have shown changes in the macrophage phenotype and improved phagocytosis after the acquisition of functional mitochondria. However, the effect of mitochondrial transplantation on promoting phagocytosis and phenotypic changes in lipid-loaded macrophages leading to foam cells has not been studied. We aimed to prove that the transplantation of healthy mitochondria to highly cholesterol-loaded macrophages induces macrophage phagocytosis and reduces the macrophage shift towards foam cells. For this purpose, using a murine macrophage cell line, RAW264.7, we determined if mitochondria transplantation to 7-ketocholesterol (7-KC)-loaded macrophages reduced lipid accumulation and modified their phagocytic function. We evidenced that mitochondrial transplantation to 7-KC-loaded macrophages reestablished phagocytosis and reduced lipid content. In addition, CPT1a expression and anti-inflammatory cytokines were restored after mitochondrial transplantation. We have developed a potential therapeutic approach to restore foam cell functionality
Infusion of IL-10–expressing cells protects against renal ischemia through induction of lipocalin-2
Ischemia/reperfusion injury is a leading cause of acute renal failure triggering an inflammatory response associated with infiltrating macrophages, which determine disease outcome. To repair the inflammation we designed a procedure whereby macrophages that overexpress the anti-inflammatory agent interleukin (IL)-10 were adoptively transferred. These bone marrow–derived macrophages were able to increase their intracellular iron pool that, in turn, augmented the expression of lipocalin-2 and its receptors. Infusion of these macrophages into rats after 1h of reperfusion resulted in localization of the cells to injured kidney tissue, caused increases in regenerative markers, and a notable reduction in both blood urea nitrogen and creatinine. Furthermore, IL-10 therapy decreased the local inflammatory profile and upregulated the expression of pro-regenerative lipocalin-2 and its receptors. IL-10–mediated protection and subsequent renal repair were dependent on the presence of iron and lipocalin-2, since the administration of a neutralizing antibody for lipocalin-2 or administration of IL-10 macrophages pretreated with the iron chelating agent deferoxamine abrogated IL-10–mediated protective effects. Thus, adoptive transfer of IL-10 macrophages to ischemic kidneys blunts acute kidney injury. These effects are mediated through the action of intracellular iron to induce lipocalin-2
Macrophage overexpressing NGAL ameliorated kidney fibrosis in the UUO mice model
Background/Aims: Alternatively activated macrophages (AAM) have regenerative and anti-inflammatory characteristics. Here, we sought to evaluate whether AAM cell therapy reduces renal inflammation and fibrosis in the unilateral ureteral obstruction (UUO) mice model. Methods: We stabilized macrophages by adenoviral vector NGAL (Neutrophil gelatinase-associated lipocalin-2) and infused them into UUO mice. To ascertain whether macrophages were capable of reaching the obstructed kidney, macrophages were stained and detected by in vivo cell tracking. Results: We demonstrated that some infused macrophages reached the obstructed kidney and that infusion of macrophages overexpressing NGAL was associated with reduced kidney interstitial fibrosis and inflammation. This therapeutic effect was mainly associated with the phenotype and function preservation of the transferred macrophages isolated from the obstructed kidney Conclusions: Macrophage plasticity is a major hurdle for achieving macrophage therapy success in chronic nephropathies and could be overcome by transferring lipocalin-2
Infusion of Phagocytic Macrophages Overexpressing CPT1a Ameliorates Kidney Fibrosis in the UUO Model
Phagocytosis is an inherent function of tissue macrophages for the removal of apoptotic cells and cellular debris during acute and chronic injury; however, the dynamics of this event during fibrosis development is unknown. We aim to prove that during the development of kidney fibrosis in the unilateral ureteral obstruction (UUO) model, there are some populations of macrophage with a reduced ability to phagocytose, and whether the infusion of a population of phagocytic macrophages could reduce fibrosis in the murine model UUO. For this purpose, we have identified the macrophage populations during the development of fibrosis and have characterized their phagocytic ability and their expression of CPT1a. Furthermore, we have evaluated the therapeutic effect of macrophages overexpressing CPT1a with high phagocytic skills. We evidenced that the macrophage population which exhibits high phagocytic ability (F4/80low-CD11b) in fibrotic animals decreases during the progression of fibrosis while the macrophage population with lower phagocytic ability (F4/80high-CD11b) in fibrotic conditions, conversely, increases and CPT1a macrophage cell therapy with a strengthening phagocytic ability is associated with a therapeutic effect on kidney fibrosis. We have developed a therapeutic approach to reduce fibrosis in the UUO model by enrichment of the kidney resident macrophage population with a higher proportion of exogenous phagocytic macrophages overexpressing CPT1a
miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia
miRNA let-7e is involved in stem cell differentiation, and metalloproteinases are among its potential target genes. We hypothesized that the inhibitory action of let-7e on regulation of MMP9 expression could represent a crucial mechanism during differentiation of adipose-derived stem cells (ASCs). ASCs were differentiated with all-trans retinoic acid (ATRA) to promote differentiation, and the effect of let-7 silencing during differentiation was tested. Results indicate that ASCs cultured with ATRA differentiated into cells of the epithelial lineage. We found that ASCs cultured with ATRA or transfected with miRNA let-7e expressed epithelial markers such as cytokeratin-18 and early renal organogenesis markers such as Pax2, Wt1, Wnt4 and megalin. Conversely, the specific knockdown of miRNA let-7e in ASCs significantly decreased the expression of these genes, indicating its vital role during the differentiation process. Using luciferase reporter assays, we also showed that MMP9 is a direct target of miRNA let-7e. Thus, our results suggest that miRNA let-7e acts as a matrix metalloproteinase-9 (MMP9) inhibitor and differentiation inducer in ASCs
- …