1,733 research outputs found

    Quantum Brachistochrone for Mixed States

    Full text link
    We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {\it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the constraints, the optimal duration time for the evolution is an exponentially decreasing function of the environment's degrees of freedom.Comment: 8 pages, 3 figure

    Transport Coefficients of Quark Gluon Plasma From Lattice Gauge Theory

    Full text link
    Numerical results for the transport coefficients of quark gluon plasma are obtained by lattice simulations on on 163×816^3 \times 8 lattice with the quench approximation where we apply the gauge action proposed by Iwasaki. The bulk viscosity is consistent with zero, and the shear viscosity is slightly smaller than the typical hadron masses. They are not far from the simple extrapolation on the figure of perturbative calculation in high temperature limit down to T∌TcT \sim T_{c}. The gluon propagator in the confined and deconfined phases are also discussed.Comment: Quark Matter 97(talk at parallel session QCD) 4 pages in latex, 4 Postscript figure

    ADM approach to 2+1 dimensional gravity coupled to particles

    Get PDF
    We develop the canonical ADM approach to 2+1 dimensional gravity in presence of point particles. The instantaneous York gauge can be applied for open universes or universes with the topology of the sphere. The sequence of canonical ADM equations is solved in terms of the conformal factor. A simple derivation is given for the solution of the two body problem. A geometrical characterization is given for the apparent singularities occurring in the N-body problem and it is shown how the Garnier hamiltonian system arises in the ADM treatment by considering the time development of the conformal factor at the locations where the extrinsic curvature tensor vanishes.Comment: 34 pages, LaTe

    Information Entropy in Cosmology

    Full text link
    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the `Kullback-Leibler Relative Information Entropy', expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time-evolution of `effective information' and explore some implications. We conjecture that the information content of the Universe -- measured by Relative Information Entropy of a cosmological model containing dust matter -- is increasing.Comment: LateX, PRLstyle, 4 pages; to appear in PR

    A Modular Invariant Quantum Theory From the Connection Formulation of (2+1)-Gravity on the Torus

    Get PDF
    By choosing an unconventional polarization of the connection phase space in (2+1)-gravity on the torus, a modular invariant quantum theory is constructed. Unitary equivalence to the ADM-quantization is shown.Comment: Latex, 4 page

    Dynamic predictive coding by the retina

    Full text link

    63/65^{63/65}Cu- and 35/37^{35/37}Cl-NMR Studies of Triplet Localization in the Quantum Spin System NH4_4CuCl3_3

    Full text link
    63/65^{63/65}Cu- and 35/37^{35/37}Cl-NMR experiments were performed to investigate triplet localization in the S=1/2S=1/2 dimer compound NH4_4CuCl3_3, which shows magnetization plateaus at one-quarter and three-quarters of the saturation magnetization. In 63/65^{63/65}Cu-NMR experiments, signal from only the singlet Cu site was observed, because that from the triplet Cu site was invisible due to the strong spin fluctuation of onsite 3dd-spins. We found that the temperature dependence of the shift of 63/65^{63/65}Cu-NMR spectra at the singlet Cu site deviated from that of macroscopic magnetization below T=6 K. This deviation is interpreted as the triplet localization in this system. From the 35/37^{35/37}Cl-NMR experiments at the 1/4-plateau phase, we found the two different temperature dependences of Cl-shift, namely the temperature dependence of one deviates below T=6 K from that of the macroscopic magnetization as observed in the 63/65^{63/65}Cu-NMR experiments, whereas the other corresponds well with that of the macroscopic magnetization in the entire experimental temperature region. We interpreted these dependences as reflecting the transferred hyperfine field at the Cl site located at a singlet site and at a triplet site, respectively. This result also indicates that the triplets are localized at low temperatures. 63/65^{63/65}Cu-NMR experiments performed at high magnetic fields between the one-quarter and three-quarters magnetization plateaus have revealed that the two differently oriented dimers in the unit cell are equally occupied by triplets, the fact of which limits the theoretical model on the periodic structure of the localized triplets.Comment: 19 pages, 9 figures, submitted to PRB (in press

    Phylogeny of Discosia and Seimatosporium, and introduction of Adisciso and Immersidiscosia genera nova

    Get PDF
    Discosia (teleomorph unknown) and Seimatosporium (teleomorph Discostroma) are saprobic or plant pathogenic, coelomycetous genera of so-called ‘pestalotioid fungi’ within the Amphisphaeriaceae (Xylariales). They share several morphological features and their generic circumscriptions appear unclear. We investigated the phylogenies of both genera on the basis of SSU, LSU and ITS nrDNA and ÎČ-tubulin gene sequences. Discosia was not monophyletic and was separated into two distinct lineages. Discosia eucalypti deviated from Discosia clade and was transferred to a new genus, Immersidiscosia, characterised by deeply immersed, pycnidioid conidiomata that are intraepidermal to subepidermal in origin, with a conidiomatal beak having periphyses. Subdividing Discosia into ‘sections’ was not considered phylogenetically significant at least for the three sections investigated (sect. Discosia, Laurina, and Strobilina). We recognised Seimatosporium s.l. as a monophyletic genus. An undescribed species belonging to Discosia with its associated teleomorph was collected on living leaves of Symplocos prunifolia from Yakushima Island, Japan. We have therefore established a new teleomorphic genus, Adisciso, for this new species, A. yakushimense. Discostroma tricellulare (anamorph: Seimatosporium azaleae), previously described from Rhododendron species, was transferred to Adisciso based on morphological and phylogenetic grounds. Adisciso is characterised by relatively small-sized ascomata without stromatic tissue, obclavate to broadly cylindrical asci with biseriate ascospores that have 2 transverse septa, and its Discosia anamorph. Based on these features, it can easily be distinguished from Discostroma, a similar genus within the Amphisphaeriaceae

    The Black Hole in Three Dimensional Space Time

    Full text link
    The standard Einstein-Maxwell equations in 2+1 spacetime dimensions, with a negative cosmological constant, admit a black hole solution. The 2+1 black hole -characterized by mass, angular momentum and charge, defined by flux integrals at infinity- is quite similar to its 3+1 counterpart. Anti-de Sitter space appears as a negative energy state separated by a mass gap from the continuous black hole spectrum. Evaluation of the partition function yields that the entropy is equal to twice the perimeter length of the horizon.Comment: This version is the one that appeared in PRL (1992), and has important improvements with respect to the one previously submitted to the archive. 13 pages, latex, no figure

    Global constants in (2+1)--dimensional gravity

    Full text link
    The extended conformal algebra (so)(2,3) of global, quantum, constants of motion in 2+1 dimensional gravity with topology R x T^2 and negative cosmological constant is reviewed. It is shown that the 10 global constants form a complete set by expressing them in terms of two commuting spinors and the Dirac gamma matrices. The spinor components are the globally constant holonomy parameters, and their respective spinor norms are their quantum commutators.Comment: 14 pages, to appear in Classical and Quantum Gravity, Spacetime Safari: Essays in Honor of Vincent Moncrief on the Classical Physics of Strong Gravitational Field
    • 

    corecore