69 research outputs found

    Channeling in purine biosynthesis : efforts to detect interactions between PurF and PurD and characterization of the FGAR-AT complex

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.Vita.Includes bibliographical references.Purine biosynthesis has been used as a paradigm for the study of metabolism of unstable molecules. Both phosphoribosylamine (PRA) and N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) have estimated half-lives in vivo of seconds. In order to avoid metabolite decomposition, one strategy cells could employ is channeling-the direct transfer of a metabolite between enzyme active sites without diffusion into the bulk media. While kinetic evidence for channeling of PRA has been reported between phosphoribosylpyrophosphate amidotransferase (PurF) and glycinamide ribonucleotide synthetase (PurD), no evidence for a PurF:PurD complex has been found. In an effort to detect this complex, stopped-flow fluorescence spectroscopy was used to detect changes in PurF fluorescence that may result from interaction with PurD. Critical to the success of these experiments was incorporation of tryptophan analogs (4-fluorotryptophan and 7-azatryptophan) into the proteins in order to increase signal specificity for PurF. No evidence for a PurF:PurD interaction was found under any of the conditions tested. The implication of this finding is discussed with regard to the PurF:PurD channeling model. Like all amidotransferase enzymes (ATs), channeling of NH3 between glutaminase and AT active sites has been implicated in the formylglycinamide ribonucleotide amidotransferase (FGAR-AT).(cont.) In B. subtilis, the FGAR-AT is composed of three proteins: PurS, PurQ, and small PurL. The first characterization of the B. subtilis FGAR-AT complex was carried out, and it was determined that a complex between the three proteins can only be isolated in the presence of Mg2+-ADP and glutamine. By analogy to the Salmonella FGAR-AT, ADP is believed to be acting as a structural cofactor, while formation of a PurQ-glutamine complex is essential for assembly of the FGAR-AT. Subsequent biophysical studies have indicated that the physiologically relevant form of the FGAR-AT complex contains 2 PurS, 1 PurQ, and 1 small PurL. Further studies on PurQ have identified residues important for catalysis and complex formation, while insight into the small PurL active site has been obtained by studies on the T. maritima enzyme. The FGAR-AT complex provides a new system in purine biosynthesis to study metabolite transfer among weakly interacting proteins.by Aaron A. Hoskins.Ph.D

    Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    Get PDF
    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation

    Ribonucleoprotein Purification and Characterization Using RNA Mango

    Get PDF
    The characterization of RNA–protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated the Mango aptamer into the S. cerevisiae U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells, and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the purification and characterization of endogenous cellular RNPs in vitro

    Heterochromatic sequences in a Drosophila whole-genome shotgun assembly

    Get PDF
    BACKGROUND: Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly. RESULTS: WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm. CONCLUSIONS: Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes

    Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence

    Get PDF
    BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis

    A Cis-Regulatory Map of the Drosophila Genome

    Get PDF
    Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships

    On the issue of transparency and reproducibility in nanomedicine.

    Get PDF
    Following our call to join in the discussion over the suitability of implementing a reporting checklist for bio-nano papers, the community responds

    Single molecule approaches for studying spliceosome assembly and catalysis

    No full text
    Single molecule assays of splicing and spliceosome assembly can provide unique insights into pre-mRNA processing that complement other technologies. Key to these experiments is the fabrication of fluorescent molecules (pre-mRNAs and spliceosome components) and passivated glass slides for each experiment. Here we describe how to produce fluorescent RNAs by splinted RNA ligation and fluorescent spliceosome subunits by SNAP-tagging proteins in cell lysate. We then depict how to passivate glass slides with polyethylene glycol for use on an inverted microscope with objective-based total internal reflection fluorescence (TIRF) optics. Finally, we describe how to tether the pre-mRNA onto the passivated slide surface and introduce the SNAP-tagged cell lysate for analysis of spliceosome assembly by single molecule fluorescence

    Formylglycinamide Ribonucleotide Amidotransferase from Thermotoga maritima: Structural Insights into Complex Formation

    Get PDF
    In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P[subscript i], and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.National Institutes of Health (U.S.) (Grant no. GM32191
    corecore