62 research outputs found

    Predator-Induced Vertical Behavior of a Ctenophore

    Get PDF
    Although many studies have focused on Mnemiopsis leidyi predation, little is known about the role of this ctenophore as prey when abundant in native and invaded pelagic systems. We examined the response of the ctenophore M. leidyi to the predatory ctenophore Beroe ovata in an experiment in which the two species could potentially sense each other while being physically separated. On average, M. leidyi responded to the predator’s presence by increasing variability in swimming speeds and by lowering their vertical distribution. Such behavior may help explain field records of vertical migration, as well as stratified and near-bottom distributions of M. leidyi

    Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis

    Get PDF
    Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth‐resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic

    Toward a global reference database of COI barcodes for marine zooplankton

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bucklin, A., Peijnenburg, K. T. C. A., Kosobokova, K. N., O'Brien, T. D., Blanco-Bercial, L., Cornils, A., Falkenhaug, T., Hopcroft, R. R., Hosia, A., Laakmann, S., Li, C., Martell, L., Questel, J. M., Wall-Palmer, D., Wang, M., Wiebe, P. H., & Weydmann-Zwolicka, A. Toward a global reference database of COI barcodes for marine zooplankton. Marine Biology, 168(6), (2021): 78, https://doi.org/10.1007/s00227-021-03887-y.Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change.Funding sources for authors of the review paper are described here: Scientific Committee on Oceanic Research (SCOR), and a grant to SCOR from the U.S. National Science Foundation (OCE-1840868). Netherlands Organization for Scientific Research (NWO) Vidi Grant/Award Number: 016.161.351 to K.T.C.A.P. European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 746186 (POSEIDoN) to D.W.P. The work of K.N.K. was performed in the framework of the state assignment of IO RAS (Theme No. 0128-2021-0007) and partially supported by Russian Foundation for Basic Research grants No. 18-05-60158 and No. 19-04-00955. The work of A.W.Z. was supported by a grant from HIDEA—Hidden diversity of the Arctic Ocean (No. 2017/27/B/NZ8/01056) from the National Science Centre, Poland, and a Fulbright Senior Award. The Norwegian Taxonomy Initiative of the Norwegian Biodiversity Information Centre provided funding for A.H. and L.M. (Project Nos. 70184233/HYPNO and 70184240/NORHYDRO), and for T.F. (Project Nos. 70184233/COPCLAD and 70184241/HYPCOP). The work of R.R.H. and J.M.Q. was supported by Census of Marine Life and NOAA Ocean Exploration and Research (NA05OAR4601079 and NA15OAR0110209). The work of S.L. was conducted at the Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB). HIFMB is a collaboration between the Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, and the Carl-von-Ossietzky University Oldenburg, initially funded by the Ministry for Science and Culture of Lower Saxony and the Volkswagen Foundation through the Niedersächsisches Vorab’ grant program (Grant No. ZN3285)

    Psychotropic medication use among nursing home residents in Austria: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of psychotropic medications and their adverse effects in frail elderly has been debated extensively. However, recent data from European studies show that these drugs are still frequently prescribed in nursing home residents. In Austria, prevalence data are lacking. We aimed to determine the prevalence of psychotropic medication prescription in Austrian nursing homes and to explore characteristics associated with their prescription.</p> <p>Methods</p> <p>Cross-sectional study and association analysis in forty-eight out of 50 nursing homes with 1844 out of a total of 2005 residents in a defined urban-rural region in Austria. Prescribed medication was retrieved from residents' charts. Psychotropic medications were coded according to the Anatomical Therapeutic Chemical Classification 2005. Cluster-adjusted multiple logistic regression analysis was performed to investigate institutional and residents' characteristics associated with prescription.</p> <p>Results</p> <p>Residents' mean age was 81; 73% of residents were female. Mean cluster-adjusted prevalence of residents with at least one psychotropic medication was 74.6% (95% confidence interval, CI, 72.0–77.2). A total of 45.9% (95% CI 42.7–49.1) had at least one prescription of an antipsychotic medication. Two third of all antipsychotic medications were prescribed for bedtime use only. Anxiolytics were prescribed in 22.2% (95% CI 20.0–24.5), hypnotics in 13.3% (95% CI 11.3–15.4), and antidepressants in 36.8% (95% CI 34.1–39.6) of residents. None of the institutional characteristics and only few residents' characteristics were significantly associated with psychotropic medication prescription. Permanent restlessness was positively associated with psychotropic medication prescription (AOR 1.54, 95% CI 1.32–1.79) whereas cognitive impairment was inversely associated (AOR 0.70, 95% CI 0.56–0.88).</p> <p>Conclusion</p> <p>Frequency of psychotropic medication prescription is high in Austrian nursing homes compared to recent published data from other countries. Interventions should aim at reduction and optimisation of prescriptions.</p

    Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia

    Get PDF
    Aim: Invasive species are of increasing global concern. Nevertheless, the mechanisms driving furtherdistribution after the initial establishment of non-native species remain largely unresolved, especiallyin marine systems. Ocean currents can be a major driver governing range occupancy, but this hasnot been accounted for in most invasion ecology studies so far. We investigate how well initialestablishment areas are interconnected to later occupancy regions to test for the potential role ofocean currents driving secondary spread dynamics in order to infer invasion corridors and thesource–sink dynamics of a non-native holoplanktonic biological probe species on a continental scale.Location: Western Eurasia.Time period: 1980s–2016.Major taxa studied: ‘Comb jelly’ Mnemiopsis leidyi.Methods: Based on 12,400 geo-referenced occurrence data, we reconstruct the invasion historyof M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match thetemporal and spatial spread dynamics with large-scale connectivity patterns via ocean currents.Additionally, genetic markers are used to test the predicted connectivity between subpopulations.Results: Ocean currents can explain secondary spread dynamics, matching observed range expansionsand the timing of first occurrence of our holoplanktonic non-native biological probe species,leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after coldwinters were followed by rapid recolonizations at a speed of up to 2,000 km per season. SourceJASPERS ET AL. | 815areas hosting year-round populations in highly interconnected regions can re-seed genotypes overlarge distances after local extinctions.Main conclusions: Although the release of ballast water from container ships may contribute tothe dispersal of non-native species, our results highlight the importance of ocean currents drivingsecondary spread dynamics. Highly interconnected areas hosting invasive species are crucial forsecondary spread dynamics on a continental scale. Invasion risk assessments should considerlarge-scale connectivity patterns and the potential source regions of non-native marine species

    β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides

    Get PDF
    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies

    Distribution of net-collected planktonic cnidarians along the northern Mid-Atlantic Ridge and their associations with the main water masses

    No full text
    Planktonic cnidarians and ctenophores were sampled with a multiple opening-closing net (Multinet) as well as a non-quantitative plankton net along the northern Mid-Atlantic Ridge (MAR) between Iceland and the Azores. Sixty-four species or genera of planktonic cnidarians (38 siphonophora, 21 hydromedusae, 5 scyphomedusae) and one genus of ctenophore were collected. Of these, Leuckartiara adnata and Clausophyes laetmata were new records for the area. Multinet samples collected from depths of 0-100, 100-500, 500-1000, 1000-1500 and 1500-2500 m at 11 stations were compared. Multivariate analysis of the data indicated that species composition and abundance along the ridge varied with the dominant water masses, with changes in the cnidarian zooplankton assemblage observed with regard to geographic location as well as depth. The surface waters of the two northernmost stations characterized by modified North Atlantic Water (MNAW) as well as the three southernmost stations characterized by North Atlantic Central Water (NACW) exhibited relatively high abundances (3284-13,915 individuals . 1000 m(-3)) in the upper 100 m. No such peak was evident at the middle stations characterized by Subarctic Intermediate Water (SAIW), where the abundances in the upper three depth strata were consistently lower (57-863 individuals . 1000 m(-3)). Across the study area, the lowest abundances were found in the 1500-2500 m stratum (0-56 ind. . 1000 m(-3)) The main divergence in the species composition and abundance of planktonic cnidarians was observed at the Subpolar Front (SPF), which marked the boundary for the distribution of many species. The divergence at the SPF was strongest in the upper 500 m but observable down to 1500 m. Profoundly different epipelagic species assemblages were observed in SAIW and NACW on opposite sides of the SPF, with the distribution of several species of calycophoran siphonophores confined to the southern NACW. At mid-water depths, the species composition north of the SPF was possibly influenced by Labrador Sea Water (LSW). The highest diversity of planktonic cnidarians was observed in the surface waters south of the SPF and in the 100-1000 m range north of the SPF. (c) 2007 Elsevier Ltd. All rights reserved
    corecore