213 research outputs found
Novel Crossover in Coupled Spin Ladders
We report a novel crossover behavior in the long-range-ordered phase of a
prototypical spin- Heisenberg antiferromagnetic ladder compound
. The staggered order was previously evidenced
from a continuous and symmetric splitting of N NMR spectral lines on
lowering temperature below mK, with a saturation towards
mK. Unexpectedly, the split lines begin to further separate away
below mK while the line width and shape remain completely
invariable. This crossover behavior is further corroborated by the NMR
relaxation rate measurements. A very strong suppression reflecting
the ordering, , observed above , is replaced by
below . These original NMR features are indicative of
unconventional nature of the crossover, which may arise from a unique
arrangement of the ladders into a spatially anisotropic and frustrated coupling
network.Comment: 5 pages, 3 figure
Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system
that can be described in terms of Tomonaga-Luttinger liquid physics. This is
explored in the present study where the magnetic field-temperature phase
diagram is thoroughly established up to 12 T using single-crystal neutron
diffraction. The transition from the N\'eel phase to the incommensurate
longitudinal spin density wave (LSDW) phase through a first-order transition,
as well as the critical exponents associated with the paramagnetic to ordered
phase transitions, and the magnetic order both in the N\'eel and in the LSDW
phase are determined, thus providing a stringent test for the theory.Comment: 17 pages with 15 figure
Spin Configuration in the 1/3 Magnetization Plateau of Azurite Determined by NMR
High magnetic field Cu NMR spectra were used to determine the local
spin polarization in the 1/3 magnetization plateau of azurite,
Cu(CO)(OH), which is a model system for the distorted diamond
antiferromagnetic spin-1/2 chain. The spin part of the hyperfine field of the
Cu2 (dimer) sites is found to be field independent, negative and strongly
anisotropic, corresponding to 10 % of fully polarized spin in a
-orbital. This is close to the expected configuration of the "quantum"
plateau, where a singlet state is stabilized on the dimer. However, the
observed non-zero spin polarization points to some triplet admixture, induced
by strong asymmetry of the diamond bonds and .Comment: Phys. Rev. Lett. 102, in press (2009
Spatially Resolved Magnetization in the Bose-Einstein Condensed State of BaCuSi2O6: Evidence for Imperfect Frustration
In order to understand the nature of the two-dimensional Bose-Einstein
condensed (BEC) phase in BaCuSi2O6, we performed detailed 63Cu and 29Si NMR
above the critical magnetic field, Hc1= 23.4 T. The two different alternating
layers present in the system have very different local magnetizations close to
Hc1; one is very weak, and its size and field dependence are highly sensitive
to the nature of inter-layer coupling. Its precise value could only be
determined by "on-site" 63Cu NMR, and the data are fully reproduced by a model
of interacting hard-core bosons in which the perfect frustration associated to
tetragonal symmetry is slightly lifted, leading to the conclusion that the
population of the less populated layers is not fully incoherent but must be
partially condensed
Comment on ``Texture in the Superconducting Order Parameter of CeCoIn Revealed by Nuclear Magnetic Resonance''
The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of
considerable recent interest. Below the temperature which is believed to
be the transition temperature () to the FFLO phase in CeCoIn, K.
Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR
spectrum with a tiny component observed at frequencies corresponding to the
normal state signal. The results were interpreted as evidence for the emergence
of an FFLO state. This result is inconsistent with two other NMR studies of V.
F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et
al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the
findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO
state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR
Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy
The pseudogap regime of high-temperature cuprates harbours diverse
manifestations of electronic ordering whose exact nature and universality
remain debated. Here, we show that the short-ranged charge order recently
reported in the normal state of YBa2Cu3Oy corresponds to a truly static
modulation of the charge density. We also show that this modulation impacts on
most electronic properties, that it appears jointly with intra-unit-cell
nematic, but not magnetic, order, and that it exhibits differences with the
charge density wave observed at lower temperatures in high magnetic fields.
These observations prove mostly universal, they place new constraints on the
origin of the charge density wave and they reveal that the charge modulation is
pinned by native defects. Similarities with results in layered metals such as
NbSe2, in which defects nucleate halos of incipient charge density wave at
temperatures above the ordering transition, raise the possibility that
order-parameter fluctuations, but no static order, would be observed in the
normal state of most cuprates if disorder were absent.Comment: Updated version. Free download at Nature Comm. website (doi below
Quantum-critical spin dynamics in quasi-one-dimensional antiferromagnets
By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin
dynamics as a function of the applied magnetic field in two gapped
one-dimensional quantum antiferromagnets: the anisotropic spin-chain system
NiCl2-4SC(NH2)2 and the spin-ladder system (C5H12N)2CuBr4. In both systems,
spin excitations are confirmed to evolve from magnons in the gapped state to
spinons in the gapples Tomonaga-Luttinger-liquid state. In between, 1/T1
exhibits a pronounced, continuous variation, which is shown to scale in
accordance with quantum criticality. We extract the critical exponent for 1/T1,
compare it to the theory, and show that this behavior is identical in both
studied systems, thus demonstrating the universality of quantum critical
behavior
Similar glassy features in the NMR response of pure and disordered La1.88Sr0.12CuO4
High Tc superconductivity in La2-xSrxCuO4 coexists with (striped and glassy)
magnetic order. Here, we report NMR measurements of the 139La spin-lattice
relaxation, which displays a stretched-exponential time dependence, in both
pure and disordered x=0.12 single crystals. An analysis in terms of a
distribution of relaxation rates T1^-1 indicates that i) the spin-freezing
temperature is spatially inhomogeneous with an onset at Tg(onset)=20 K for the
pristine samples, and ii) the width of the T1^-1 distribution in the vicinity
of Tg(onset) is insensitive to an ~1% level of atomic disorder in CuO2 planes.
This suggests that the stretched-exponential 139La relaxation, considered as a
manifestation of the systems glassiness, may not arise from quenched disorder.Comment: 7 pages, to be published in Phys. Rev.
Phase Diagram of CeCoIn_5 in the Vicinity of H_{c2} as Determined by NMR
We report ^{115}In nuclear magnetic resonance (NMR) measurements in the
heavy-fermion superconductor CeCoIn_5 as a function of temperature in different
magnetic fields applied parallel to the plane. The
measurements probe a part of the phase diagram in the vicinity of the
superconducting critical field H_{c2} where a possible inhomogeneous
superconducting state, Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), is stabilized.
We have identified clear NMR signatures of two phase transitions occurring in
this part of the phase diagram. The first order phase transitions are
characterized by the sizable discontinuity of the shift. We find that a
continuous second order phase transition from the superconducting to the FFLO
state occurs at temperature below which the shift becomes temperature
independent. We have compiled the first phase diagram of CeCoIn_5 in the
vicinity of H_{c2} from NMR data and found that it is in agreement with the one
determined by thermodynamic measurements.Comment: 4 pages, submitted to Proceedings of SCES'0
- âŠ