751 research outputs found

    Multi-overlap simulations of spin glasses

    Get PDF
    We present results of recent high-statistics Monte Carlo simulations of the Edwards-Anderson Ising spin-glass model in three and four dimensions. The study is based on a non-Boltzmann sampling technique, the multi-overlap algorithm which is specifically tailored for sampling rare-event states. We thus concentrate on those properties which are difficult to obtain with standard canonical Boltzmann sampling such as the free-energy barriers F^q_B in the probability density P_J(q) of the Parisi overlap parameter q and the behaviour of the tails of the disorder averaged density P(q) = [P_J(q)]_av.Comment: 14 pages, Latex, 18 Postscript figures, to be published in NIC Series - Publication Series of the John von Neumann Institute for Computing (NIC

    Early manganese-toxicity response in Vigna unguiculata L. - A proteomic and transcriptomic study

    Get PDF
    The apoplast is known to play a predominant role in the expression of manganese (Mn) toxicity in cowpea (Vigna unguiculata L.) leaves. To unravel early Mn-toxicity responses after 1-3 days Mn treatment also in the leaf symplast, we studied the symplastic reactions induced by Mn in two cultivars differing in Mn tolerance on a total cellular level. Comparative proteome analyses of plants exposed to low or high Mn allowed to identify proteins specifically affected by Mn, particularly in the Mn-sensitive cowpea cultivar. These proteins are involved in CO2 fixation, stabilization of the Mn cluster of the photosystem II, pathogenesis-response reactions and protein degradation. Chloroplastic proteins important for CO2 fixation and photosynthesis were of lower abundance upon Mn stress suggesting scavenging of metabolic energy for a specific stress response. Transcriptome analyses supported these findings, but additionally revealed an upregulation of genes involved in signal transduction only in the Mn-sensitive cultivar. In conclusion, a coordinated interplay of apoplastic and symplastic reactions seems to be important during the Mn-stress response in cowpea. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA

    Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon

    Get PDF
    Previous work suggested that the apoplastic phenol composition and its interaction with apoplastic class III peroxidases (PODs) are decisive in the development or avoidance of manganese (Mn) toxicity in cowpea (Vigna unguiculata L.). This study characterizes apoplastic PODs with particular emphasis on the activities of specific isoenzymes and their modulation by phenols in the Mn-sensitive cowpea cultivar TVu 91 as affected by Mn and silicon (Si) supply. Si reduced Mn-induced toxicity symptoms without affecting the Mn uptake. Blue Native-PAGE combined with Nano-LC-MS/MS allowed identification of a range of POD isoenzymes in the apoplastic washing fluid (AWF). In Si-treated plants Mn-mediated induction of POD activity was delayed. Four POD isoenzymes eluted from the BN gels catalysed both H2O2-consuming and H2O2-producing activity with pH optima at 6.5 and 5.5, respectively. Four phenols enhanced NADH-peroxidase activity of these isoenzymes in the presence of Mn2+ (p-coumaric=vanillic>>benzoic>ferulic acid). p-Coumaric acid-enhanced NADH-peroxidase activity was inhibited by ferulic acid (50%) and five other phenols (50–90%). An independent component analysis (ICA) of the total and apoplastic GC-MS-based metabolome profile showed that Mn, Si supply, and the AWF fraction (AWFH2O, AWFNaCl) significantly changed the metabolite composition. Extracting non-polar metabolites from the AWF allowed the identification of phenols. Predominantly NADH-peroxidase activity-inhibiting ferulic acid appeared to be down-regulated in Mn-sensitive (+Mn, –Si) and up-regulated in Mn-tolerant (+Si) leaf tissue. The results presented here support the previously hypothesized role of apoplastic NADH-peroxidase and its activity-modulating phenols in Mn toxicity and Si-enhanced Mn tolerance

    Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein

    Get PDF
    Cockayne syndrome (CS) is a nucleotide excision repair disorder characterized by sun (UV) sensitivity and severe developmental problems. Two genes have been shown to be involved: CSA and CSB. Both proteins play an essential role in preferential repair of transcription-blocking lesions from active genes. In this study we report the purification and characterization of baculovirus-produced HA-His6-tagged CSB protein (dtCSB), using a highly efficient three-step purification protocol. Microinjection of dtCSB protein in CS-B fibroblasts shows that it is biologically functional in vivo. dtCSB exhibits DNA-dependent ATPase activity, stimulated by naked as well as nucleosomal DNA. Using structurally defined DNA oligonucleotides, we show that double-stranded DNA and double-stranded DNA with partial single-stranded character but not true single-stranded DNA act as efficient cofactors for CSB ATPase activity. Using a variety of substrates, no overt DNA unwinding by dtCSB could be detected, as found with other SNF2/SWI2 family proteins. By site-directed mutagenesis the invariant lysine residue in the NTP-binding motif of CSB was substituted with a physicochemically related arginine. As expected, this mutation abolished ATPase activity. Surprisingly, the mutant protein was nevertheless able to partially rescue the defect in recovery of RNA synthesis after UV upon microinjection in CS-B fibroblasts. These results indicate that integrity of the conserved nucleotide-binding domain is important for the in vivo function of CSB but that also other properties independent from ATP hydrolysis may contribute to CSB biological functions

    Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.)

    Get PDF
    Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.BMZ/GTZ/05.7860.9-001.00BMZ/GTZ/05.7860.9-001.0

    Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition.

    Get PDF
    A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents
    corecore