1,634 research outputs found

    Transport Coefficients of Quark Gluon Plasma From Lattice Gauge Theory

    Full text link
    Numerical results for the transport coefficients of quark gluon plasma are obtained by lattice simulations on on 163×816^3 \times 8 lattice with the quench approximation where we apply the gauge action proposed by Iwasaki. The bulk viscosity is consistent with zero, and the shear viscosity is slightly smaller than the typical hadron masses. They are not far from the simple extrapolation on the figure of perturbative calculation in high temperature limit down to TTcT \sim T_{c}. The gluon propagator in the confined and deconfined phases are also discussed.Comment: Quark Matter 97(talk at parallel session QCD) 4 pages in latex, 4 Postscript figure

    Non-perturbative renormalisation for overlap fermions

    Get PDF
    Using non-perturbative techniques we have found the renormalisation factor, Z, in the RI-MOM scheme for quark bilinear operators in quenched QCD. We worked with overlap fermions using the Luescher-Weisz gauge action. Our calculation was performed at beta=8.45 at a lattice spacing of 1/a=2.1 GeV using a value of rho=1.4. Our results show good agreement between the vector and the axial vector in the zero mass limit. This shows that overlap fermions have good chiral properties. To attempt to improve the discretisation errors in our results we subtracted the O(a^2) terms in one-loop lattice perturbation theory from the Monte Carlo Green functions. In particular we paid attention to the operators for the observable . We found a value for the renormalisation constants Z^msbar_(v_2b) and Z^msbar_(v_2a) just less than 1.9 at mu=1/a=2.1 GeV.Comment: 6 pages, 3 figures, uses PoS style, poster presented at Lattice 2005 (Chiral Fermions), to be published in Proceedings of Scienc

    Le Castellan (Istres, Bouches-du-Rhône) : resultats de prospections géophysique

    Get PDF
    YesTwo seasons of geophysical prospection (magnetic, resistance and ground-penetrating radar) were conducted at the Iron Age oppidum of Le Castellan, Istres, Bouches-du-Rhône, in order to determine the utility of these techniques for sites in this region. The survey revealed numerous strong anomalies, of which many ran parallel or perpendicular to one another. These are the sorts of responses one might expect from the remains of buried stone wall foundations; this interpretation is supported by the presence, on the west side of the site, of exposed walls on the same alignment as certain of the geophysical anomalies. Overall, the evidence suggests a network of buried buildings and road-ways across the oppidum. One particularly substantial building was identified towards the centre of the site, through the presence of a strong resistance anomaly of distinctly rectilinear form. It appears to represent the remains of a buried stone building with three rooms. In conclusion, the results provide strong encouragement for the further application of geophysical survey in this regio

    The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Full text link
    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N_f=2 flavors of dynamical quarks at imaginary vacuum angle theta. The calculation proceeds via the CP odd form factor F_3. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F_3 at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing theta.Comment: 22 pages, 10 figure

    Theory of Linear Spin Wave Emission from a Bloch Domain Wall

    Get PDF
    We report an analytical theory of linear emission of exchange spin waves from a Bloch domain wall, excited by a uniform microwave magnetic field. The problem is reduced to a one-dimensional Schr\"odinger-like equation with a P\"oschl-Teller potential and a driving term of the same profile. The emission of plane spin waves is observed at excitation frequencies above a threshold value, as a result of a linear process. The height-to-width aspect ratio of the P\"oschl-Teller profile for a domain wall is found to correspond to a local maximum of the emission efficiency. Furthermore, for a tailored P\"oschl-Teller potential with a variable aspect ratio, particular values of the latter can lead to enhanced or even completely suppressed emission.Comment: added ancillary file

    Damping the zero-point energy of a harmonic oscillator

    Get PDF
    The physics of quantum electromagnetism in an absorbing medium is that of a field of damped harmonic oscillators. Yet until recently the damped harmonic oscillator was not treated with the same kind of formalism used to describe quantum electrodynamics in a arbitrary medium. Here we use the techniques of macroscopic QED, based on the Huttner--Barnett reservoir, to describe the quantum mechanics of a damped oscillator. We calculate the thermal and zero-point energy of the oscillator for a range of damping values from zero to infinity. While both the thermal and zero-point energies decrease with damping, the energy stored in the oscillator at fixed temperature increases with damping, an effect that may be experimentally observable. As the results follow from canonical quantization, the uncertainty principle is valid for all damping levels.Comment: 10 page

    A lattice determination of g_A and <x> from overlap fermions

    Full text link
    We present results for the nucleon's axial charge g_A and the first moment of the unpolarized parton distribution function from a simulation of quenched overlap fermions.Comment: Talk presented at Lattice2004(chiral), 4 pages, 4 figure
    corecore