810 research outputs found

    A Constant Spectral Index for Sagittarius A* During Infrared/X-ray Intensity Variations

    Get PDF
    We report the first time-series of broadband infrared (IR) color measurements of Sgr A*, the variable emission source associated with the supermassive black hole at the Galactic Center. Using the laser and natural guide star AO systems on the Keck II telescope, we imaged Sgr A* in multiple near-infrared broadband filters with a typical cycle time of ~3 min during 4 observing runs (2005-2006), two of which were simultaneous with Chandra X-ray measurements. In spite of the large range of dereddened flux densities for Sgr A* (2-30 mJy), all of our near-IR measurements are consistent with a constant spectral index of alpha = -0.6+-0.2. Furthermore, this value is consistent with the spectral indices observed at X-ray wavelengths during nearly all outbursts; which is consistent with the synchrotron self-Compton model for the production of the X-ray emission. During the coordinated observations, one IR outburst occurs <36 min after a possibly associated X-ray outburst, while several similar IR outbursts show no elevated X-ray emission. A variable X-ray to IR ratio and constant infrared spectral index challenge the notion that the IR and X-ray emission are connected to the same electrons. We, therefore, posit that the population of electrons responsible for both the IR and X-ray emission are generated by an acceleration mechanism that leaves the bulk of the electron energy distribution responsible for the IR emission unchanged, but has a variable high-energy cutoff. Occasionally a tail of electrons >1 GeV is generated, and it is this high-energy tail that gives rise to the X-ray outbursts. One possible explanation for this type of variation is from the turbulence induced by a magnetorotational instability, in which the outer scale length of the turbulence varies and changes the high-energy cutoff.Comment: 11 pages, 7 figures (color), Accepted for publication in ApJ. Resolution (Fig 1&2) downgraded for astro-ph. For full resolution, see http://casa.colorado.edu/~hornstei/sgracolor.pd

    Tributes to Professor Alice Brumbaugh

    Get PDF
    Tributes to Professor Alice Brumbaugh upon her retirement from the University of Maryland School of Law

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap

    Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor neuron system, where variability in progression rate limits clinical trial efficacy. Therefore, better prognostication will facilitate therapeutic progress. In this study, we investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping. First, we identified, in a longitudinal cohort, miRNAs whose plasma levels remain stable over the course of disease. Next, we showed that high levels of miR-181, a miRNA enriched in neurons, predicts a greater than two-fold risk of death in independent discovery and replication cohorts (126 and 122 patients, respectively). miR-181 performance is similar to neurofilament light chain (NfL), and when combined together, miR-181 + NfL establish a novel RNA–protein biomarker pair with superior prognostication capacity. Therefore, plasma miR-181 alone and a novel miRNA–protein biomarker approach, based on miR-181 + NfL, boost precision of patient stratification. miR-181-based ALS biomarkers encourage additional validation and might enhance the power of clinical trials

    An evolving hot spot orbiting around Sgr A*

    Full text link
    Here we report on recent near-infrared observations of the Sgr A* counterpart associated with the super-massive ~ 4x10^6 M_sun black hole at the Galactic Center. We find that the May 2007 flare shows the highest sub-flare contrast observed until now, as well as evidence for variations in the profile of consecutive sub-flares. We modeled the flare profile variations according to the elongation and change of the shape of a spot due to differential rotation within the accretion disk.Comment: 7 pages, 5 figures, contribution for the conference "The Universe under the Microscope" (AHAR 2008), to be published in Journal of Physics: Conference Series by Institute of Physics Publishin

    Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare

    Get PDF
    This paper reports measurements of Sgr A* made with NACO in L' -band (3.80 um), Ks-band (2.12 um) and H-band (1.66 um) and with VISIR in N-band (11.88 um) at the ESO VLT, as well as with XMM-Newton at X-ray (2-10 keV) wavelengths. On 4 April, 2007, a very bright flare was observed from Sgr A* simultaneously at L'-band and X-ray wavelengths. No emission was detected using VISIR. The resulting SED has a blue slope (beta > 0 for nuL_nu ~ nu^beta, consistent with nuL_nu ~ nu^0.4) between 12 micron and 3.8 micron. For the first time our high quality data allow a detailed comparison of infrared and X-ray light curves with a resolution of a few minutes. The IR and X-ray flares are simultaneous to within 3 minutes. However the IR flare lasts significantly longer than the X-ray flare (both before and after the X-ray peak) and prominent substructures in the 3.8 micron light curve are clearly not seen in the X-ray data. From the shortest timescale variations in the L'-band lightcurve we find that the flaring region must be no more than 1.2 R_S in size. The high X-ray to infrared flux ratio, blue nuL_nu slope MIR to L' -band, and the soft nuL_nu spectral index of the X-ray flare together place strong constraints on possible flare emission mechanisms. We find that it is quantitatively difficult to explain this bright X-ray flare with inverse Compton processes. A synchrotron emission scenario from an electron distribution with a cooling break is a more viable scenario.Comment: ApJ, 49 pages, 9 figure

    Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11

    Full text link
    We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with milli-arcsecond spatial resolution indicates the first direct evidence that hourly time scale flares are localized within the inner 30Ă—\times70 Schwarzschild radii of Sgr A*. We also show several cross correlation plots between near-IR, millimeter and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to three hours. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission being optically thick initially followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press

    Coordinated mm/sub-mm observations of Sagittarius A* in May 2007

    Get PDF
    At the center of the Milky Way, with a distance of ~8 kpc, the compact source Sagittarius A* (SgrA*) can be associated with a super massive black hole of ~4x10^6 solar masses. SgrA* shows strong variability from the radio to the X-ray wavelength domains. Here we report on simultaneous NIR/sub-millimeter/X-ray observations from May 2007 that involved the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope, the Australian Telescope Compact Array (ATCA), the US mm-array CARMA, the IRAM 30m mm-telescope, and other telescopes. We concentrate on the time series of mm/sub-mm data from CARMA, ATCA, and the MAMBO bolometer at the IRAM 30m telescope.Comment: 7 pages, 3 figures, contribution for the conference "The Universe under the Microscope" (AHAR 2008), to be published in Journal of Physics: Conference Series by Institute of Physics Publishin

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&

    Madness decolonized?: Madness as transnational identity in Gail Hornstein’s Agnes’s Jacket

    Get PDF
    The US psychologist Gail Hornstein’s monograph Agnes’s Jacket: A Psychologist’s Search for the Meanings of Madness (2009) is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an “anti-colonial” struggle to reclaim the experiential world “colonized” by psychiatry. A series of literal and figurative appeals make recourse to the inner world and (corresponding) cultural world of the mad, as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the “inner” world “colonized” by the psychiatric regime. There are a number of difficulties with Hornstein’s rhetoric, however. Her “ethnicity-and-rights” response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornstein’s porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic “re-colonization” of mad experience
    • …
    corecore