258 research outputs found

    Tom Jones vs. The United States - Uncle Sam\u27s Reply

    Get PDF

    Labor Injunctions under the Colorado Labor Peace Act

    Get PDF

    The Extent to Which Taft-Hartley has Superseded State Labor Laws

    Get PDF

    Secondary Boycotts under the Taft-Hartley Act

    Get PDF

    Obesity in Tibetans Aged 30–70 Living at Different Altitudes under the North and South Faces of Mt. Everest

    Get PDF
    Risk factors for chronic diseases in Tibetans may be modified due to hypobaric hypoxia. The objectives of this study were to determine the prevalence of obesity at varying altitudes of 1,200, 2,900 and 3,700 meters above sea-level in Tibet and Nepal; to estimate the effect of altitude on body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR). Three cross-sectional studies with simple random sampling were performed on 617 men and women. BMI, WC and WHtR decreased with increasing altitude. It is likely that the physical conditions such as low temperatures and low oxygen levels have a direct catabolic effect

    Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m

    Get PDF
    Upon ascent to high altitude, cerebral blood flow (CBF) rises substantially before returning to sea-level values. The underlying mechanisms for these changes are unclear. We examined three hypotheses: (1) the balance of arterial blood gases upon arrival at and across 2 weeks of living at 5050 m will closely relate to changes in CBF; (2) CBF reactivity to steady-state changes in CO2 will be reduced following this 2 week acclimatisation period, and (3) reductions in CBF reactivity to CO2 will be reflected in an augmented ventilatory sensitivity to CO2. We measured arterial blood gases, middle cerebral artery blood flow velocity (MCAv, index of CBF) and ventilation () at rest and during steady-state hyperoxic hypercapnia (7% CO2) and voluntary hyperventilation (hypocapnia) at sea level and then again following 2–4, 7–9 and 12–15 days of living at 5050 m. Upon arrival at high altitude, resting MCAv was elevated (up 31 ± 31%; P < 0.01; vs. sea level), but returned to sea-level values within 7–9 days. Elevations in MCAv were strongly correlated (R2= 0.40) with the change in ratio (i.e. the collective tendency of arterial blood gases to cause CBF vasodilatation or constriction). Upon initial arrival and after 2 weeks at high altitude, cerebrovascular reactivity to hypercapnia was reduced (P < 0.05), whereas hypocapnic reactivity was enhanced (P < 0.05 vs. sea level). Ventilatory response to hypercapnia was elevated at days 2–4 (P < 0.05 vs. sea level, 4.01 ± 2.98 vs. 2.09 ± 1.32 l min−1 mmHg−1). These findings indicate that: (1) the balance of arterial blood gases accounts for a large part of the observed variability (∼40%) leading to changes in CBF at high altitude; (2) cerebrovascular reactivity to hypercapnia and hypocapnia is differentially affected by high-altitude exposure and remains distorted during partial acclimatisation, and (3) alterations in cerebrovascular reactivity to CO2 may also affect ventilatory sensitivity
    corecore