13,785 research outputs found
Squeezing as an irreducible resource
We show that squeezing is an irreducible resource which remains invariant
under transformations by linear optical elements. In particular, we give a
decomposition of any optical circuit with linear input-output relations into a
linear multiport interferometer followed by a unique set of single mode
squeezers and then another multiport interferometer. Using this decomposition
we derive a no-go theorem for superpositions of macroscopically distinct states
from single-photon detection. Further, we demonstrate the equivalence between
several schemes for randomly creating polarization-entangled states. Finally,
we derive minimal quantum optical circuits for ideal quantum non-demolition
coupling of quadrature-phase amplitudes.Comment: 4 pages, 3 figures, new title, removed the fat
Majorization criterion for distillability of a bipartite quantum state
Bipartite quantum states are classified into three categories: separable
states, bound entangled states, and free entangled states. It is of great
importance to characterize these families of states for the development of
quantum information science. In this paper, I show that the separable states
and the bound entangled states have a common spectral property. More precisely,
I prove that for undistillable -- separable and bound entangled -- states, the
eigenvalue vector of the global system is majorized by that of the local
system. This result constitutes a new sufficient condition for distillability
of bipartite quantum states. This is achieved by proving that if a bipartite
quantum state satisfies the reduction criterion for distillability, then it
satisfies the majorization criterion for separability.Comment: 4 pages, no figures, REVTEX. A new lemma (Lemma 2) added. To appear
in Physical Review Letter
Entanglement versus Correlations in Spin Systems
We consider pure quantum states of spins or qubits and study the
average entanglement that can be \emph{localized} between two separated spins
by performing local measurements on the other individual spins. We show that
all classical correlation functions provide lower bounds to this
\emph{localizable entanglement}, which follows from the observation that
classical correlations can always be increased by doing appropriate local
measurements on the other qubits. We analyze the localizable entanglement in
familiar spin systems and illustrate the results on the hand of the Ising spin
model, in which we observe characteristic features for a quantum phase
transition such as a diverging entanglement length.Comment: 4 page
Wave Profile for Anti-force Waves with Maximum Possible Currents
In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave
Simulation of time evolution with the MERA
We describe an algorithm to simulate time evolution using the Multi-scale
Entanglement Renormalization Ansatz (MERA) and test it by studying a critical
Ising chain with periodic boundary conditions and with up to L ~ 10^6 quantum
spins. The cost of a simulation, which scales as L log(L), is reduced to log(L)
when the system is invariant under translations. By simulating an evolution in
imaginary time, we compute the ground state of the system. The errors in the
ground state energy display no evident dependence on the system size. The
algorithm can be extended to lattice systems in higher spatial dimensions.Comment: final version with data improvement (precision and size), 4.1 pages,
4 figures + extra on X
Entanglement-Saving Channels
The set of Entanglement Saving (ES) quantum channels is introduced and
characterized. These are completely positive, trace preserving transformations
which when acting locally on a bipartite quantum system initially prepared into
a maximally entangled configuration, preserve its entanglement even when
applied an arbitrary number of times. In other words, a quantum channel
is said to be ES if its powers are not entanglement-breaking for all
integers . We also characterize the properties of the Asymptotic
Entanglement Saving (AES) maps. These form a proper subset of the ES channels
that is constituted by those maps which, not only preserve entanglement for all
finite , but which also sustain an explicitly not null level of entanglement
in the asymptotic limit~. Structure theorems are provided
for ES and for AES maps which yield an almost complete characterization of the
former and a full characterization of the latter.Comment: 26 page
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment
Spectral Conditions on the State of a Composite Quantum System Implying its Separability
For any unitarily invariant convex function F on the states of a composite
quantum system which isolates the trace there is a critical constant C such
that F(w)<= C for a state w implies that w is not entangled; and for any
possible D > C there are entangled states v with F(v)=D. Upper- and lower
bounds on C are given. The critical values of some F's for qubit/qubit and
qubit/qutrit bipartite systems are computed. Simple conditions on the spectrum
of a state guaranteeing separability are obtained. It is shown that the thermal
equilbrium states specified by any Hamiltonian of an arbitrary compositum are
separable if the temperature is high enough.Comment: Corrects 1. of Lemma 2, and the (under)statement of Proposition 7 of
the earlier version
Better bound on the exponent of the radius of the multipartite separable ball
We show that for an m-qubit quantum system, there is a ball of radius
asymptotically approaching kappa 2^{-gamma m} in Frobenius norm, centered at
the identity matrix, of separable (unentangled) positive semidefinite matrices,
for an exponent gamma = (1/2)((ln 3/ln 2) - 1), roughly .29248125. This is much
smaller in magnitude than the best previously known exponent, from our earlier
work, of 1/2. For normalized m-qubit states, we get a separable ball of radius
sqrt(3^(m+1)/(3^m+3)) * 2^{-(1 + \gamma)m}, i.e. sqrt{3^{m+1}/(3^m+3)}\times
6^{-m/2} (note that \kappa = \sqrt{3}), compared to the previous 2 * 2^{-3m/2}.
This implies that with parameters realistic for current experiments, NMR with
standard pseudopure-state preparation techniques can access only unentangled
states if 36 qubits or fewer are used (compared to 23 qubits via our earlier
results). We also obtain an improved exponent for m-partite systems of fixed
local dimension d_0, although approaching our earlier exponent as d_0
approaches infinity.Comment: 30 pp doublespaced, latex/revtex, v2 added discussion of Szarek's
upper bound, and reference to work of Vidal, v3 fixed some errors (no effect
on results), v4 involves major changes leading to an improved constant, same
exponent, and adds references to and discussion of Szarek's work showing that
exponent is essentially optimal for qubit case, and Hildebrand's alternative
derivation for qubit case. To appear in PR
StemNet: An Evolving Service for Knowledge Networking in the Life Sciences
Up until now, crucial life science information resources, whether bibliographic or factual databases, are isolated from each other. Moreover, semantic metadata intended to structure their contents is supplied in a manual form only. In the StemNet project we aim at developing a framework for semantic interoperability for these resources. This will facilitate the extraction of relevant information from textual sources and the generation of semantic metadata in a fully automatic manner. In this way, (from a computational perspective) unstructured life science documents are linked to structured biological fact databases, in particular to the identifiers of genes, proteins, etc. Thus, life scientists will be able to seamlessly access information from a homogeneous platform, despite the fact that the original information was unlinked and scattered over the whole variety of heterogeneous life science information resources and, therefore, almost inaccessible for integrated systematic search by academic, clinical, or industrial users
- …