1,299 research outputs found
On the isomorphism problem of concept algebras
Weakly dicomplemented lattices are bounded lattices equipped with two unary
operations to encode a negation on {\it concepts}. They have been introduced to
capture the equational theory of concept algebras \cite{Wi00}. They generalize
Boolean algebras. Concept algebras are concept lattices, thus complete
lattices, with a weak negation and a weak opposition. A special case of the
representation problem for weakly dicomplemented lattices, posed in
\cite{Kw04}, is whether complete {\wdl}s are isomorphic to concept algebras. In
this contribution we give a negative answer to this question (Theorem
\ref{T:main}). We also provide a new proof of a well known result due to M.H.
Stone \cite{St36}, saying that {\em each Boolean algebra is a field of sets}
(Corollary \ref{C:Stone}). Before these, we prove that the boundedness
condition on the initial definition of {\wdl}s (Definition \ref{D:wdl}) is
superfluous (Theorem \ref{T:wcl}, see also \cite{Kw09}).Comment: 15 page
Discomfort experienced at the daily life of relatives of people admitted at ICU
This is a qualitative research that aimed to get to know the discomforts experienced at the daily life of relatives of people admitted at the intensive care unit (ICU). It happened on a general ICU at a public hospital, in Salvador-BA, by the second half of 2009. Nine relatives of people admitted were interviewed. The technique used was the analysis from the Grounded Theory. The results showed that the interaction of the families with the reality of life threat from the relative admitted, had as main discomfort, the discontinuity in their daily life, which was characterized by four categories: Living the distress of a possible loss, difficulties to take care of themselves, facing a separation in the family, suffering with changes in their social and professional lives. These discomforts can be minimized by the healthcare team’s effectiveness to the demands of the family and the support of its social network
Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition
BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations
Inside the guts of wood-eating catfishes: can they digest wood?
To better understand the structure and function of the gastrointestinal (GI) tracts of wood-eating catfishes, the gross morphology, length, and microvilli surface area (MVSA) of the intestines of wild-caught Panaque nocturnus, P. cf. nigrolineatus “Marañon”, and Hypostomus pyrineusi were measured, and contrasted against these same metrics of a closely related detritivore, Pterygoplichthys disjunctivus. All four species had anatomically unspecialized intestines with no kinks, valves, or ceca of any kind. The wood-eating catfishes had body size-corrected intestinal lengths that were 35% shorter than the detritivore. The MVSA of all four species decreased distally in the intestine, indicating that nutrient absorption preferentially takes place in the proximal and mid-intestine, consistent with digestive enzyme activity and luminal carbohydrate profiles for these same species. Wild-caught Pt. disjunctivus, and P. nigrolineatus obtained via the aquarium trade, poorly digested wood cellulose (<33% digestibility) in laboratory feeding trials, lost weight when consuming wood, and passed stained wood through their digestive tracts in less than 4 h. Furthermore, no selective retention of small particles was observed in either species in any region of the gut. Collectively, these results corroborate digestive enzyme activity profiles and gastrointestinal fermentation levels in the fishes’ GI tracts, suggesting that the wood-eating catfishes are not true xylivores such as beavers and termites, but rather, are detritivores like so many other fishes from the family Loricariidae
The Evolution of Social Orienting: Evidence from Chicks (Gallus gallus) and Human Newborns
Converging evidence from different species indicates that some newborn vertebrates, including humans, have visual predispositions to attend to the head region of animate creatures. It has been claimed that newborn preferences for faces are domain-relevant and similar in different species. One of the most common criticisms of the work supporting domain-relevant face biases in human newborns is that in most studies they already have several hours of visual experience when tested. This issue can be addressed by testing newly hatched face-na\uefve chicks (Gallus gallus) whose preferences can be assessed prior to any other visual experience with faces
Pogostick: A New Versatile piggyBac Vector for Inducible Gene Over-Expression and Down-Regulation in Emerging Model Systems
Non-traditional model systems need new tools that will enable them to enter the field of functional genetics. These tools should enable the exploration of gene function, via knock-downs of endogenous genes, as well as over-expression and ectopic expression of transgenes.We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ line transformation by the piggyBac transposable element. Pogostick can be found at www.addgene.org, a non-profit plasmid repository. The vector currently uses the heat-shock promoter Hsp70 from Drosophila to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. We detail how to clone candidate genes into this vector and test its functionality in Drosophila by targeting a gene coding for the fluorescent protein DsRed. By cloning a single DsRed copy into the vector, and generating transgenic lines, we show that DsRed mRNA and protein levels are elevated following heat-shock. When cloning a second copy of DsRed in reverse orientation into a flanking site, and transforming flies constitutively expressing DsRed in the eyes, we show that endogenous mRNA and protein levels drop following heat-shock. We then test the over-expression vector, containing the complete cDNA of Ultrabithorax (Ubx) gene, in an emerging model system, Bicyclus anynana. We produce a transgenic line and show that levels of Ubx mRNA expression rise significantly following a heat-shock. Finally, we show how to obtain genomic sequence adjacent to the Pogostick insertion site and to estimate transgene copy number in genomes of transformed individuals.This new vector will allow emerging model systems to enter the field of functional genetics with few hurdles
Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings
Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error–correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons
The Shine-Through Masking Paradigm Is a Potential Endophenotype of Schizophrenia
BACKGROUND: To understand the genetics of schizophrenia, a hunt for so-called intermediate phenotypes or endophenotypes is ongoing. Visual masking has been proposed to be such an endophenotype. However, no systematic study has been conducted yet to prove this claim. Here, we present the first study showing that masking meets the most important criteria for an endophenotype. METHODOLOGY/PRINCIPAL FINDINGS: We tested 62 schizophrenic patients, 39 non-affected first-degree relatives, and 38 healthy controls in the shine-through masking paradigm and, in addition, in the Continuous Performance Test (CPT) and the Wisconsin Card Sorting Test (WCST). Most importantly, masking performance of relatives was significantly in between the one of patients and controls in the shine-through paradigm. Moreover, deficits were stable throughout one year. Using receiver operating characteristics (ROC) methods, we show that the shine-through paradigm distinguishes with high sensitivity and specificity between schizophrenic patients, first-order relatives and healthy controls. CONCLUSIONS/SIGNIFICANCE: The shine-through paradigm is a potential endophenotype
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
- …