9,111 research outputs found

    Application of a virtual watershed in academic education

    No full text
    International audienceHydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Fuel-Supply-Limited Stellar Relaxation Oscillations: Application to Multiple Rings around AGB Stars and Planetary Nebulae

    Full text link
    We describe a new mechanism for pulsations in evolved stars: relaxation oscillations driven by a coupling between the luminosity-dependent mass-loss rate and the H fuel abundance in a nuclear-burning shell. When mass loss is included, the outward flow of matter can modulate the flow of fuel into the shell when the stellar luminosity is close to the Eddington luminosity LEddL_{\rm Edd}. When the luminosity drops below LEddL_{\rm Edd}, the mass outflow declines and the shell is re-supplied with fuel. This process can be repetitive. We demonstrate the existence of such oscillations and discuss the dependence of the results on the stellar parameters. In particular, we show that the oscillation period scales specifically with the mass of the H-burning relaxation shell (HBRS), defined as the part of the H-burning shell above the minimum radius at which the luminosity from below first exceeds the Eddington threshold at the onset of the mass loss phase. For a stellar mass M_*\sim 0.7\Msun, luminosity L_*\sim 10^4\Lsun, and mass loss rate |\dot M|\sim 10^{-5}\Msun yr1^{-1}, the oscillations have a recurrence time 1400\sim 1400 years 57τfsm\sim 57\tau_{\rm fsm}, where τfsm\tau_{\rm fsm} is the timescale for modulation of the fuel supply in the HBRS by the varying mass-loss rate. This period agrees with the \sim 1400-year period inferred for the spacings between the shells surrounding some planetary nebulae, and the the predictied shell thickness, of order 0.4 times the spacing, also agrees reasonably well.Comment: 15 pages TeX, 1 ps figure submitted to Ap

    Testing the Antelope software suite to realize a distributed seismic database among Austria, Northeastern Italy and Slovenia

    Get PDF
    Since 2002 the Zentralanstalt für Meteorologie und Geodynamik (ZAMG, http://www.zamg.ac.at/), the Centro di Ricerche Sismologiche (CRS, http://www.crs.inogs.it) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), the Dipartimento di Scienze della Terra (DST, http://www.dst.univ.trieste.it/) of the Università di Trieste and the Agencija Republike Slovenije Za Okolje (ARSO, http://www.arso.gov.si/) are involved in the EU INTERREG IIIA project “Trans-national seismological networks in the South-Eastern Alps”. The Antelope software suite has been chosen as the common basis for real time data exchange, rapid location of earthquakes and alerting. The Antelope software suite has the capability to exchange data in real time among data centres: for this purpose the standard “orb2orb” software module is used. It uses a proprietary protocol and a point-to-point client/server architecture to exchange data. The last release of the Antelope software suite contains a more sophisticated version of this data exchange module: it is named “orbxchange”. “orbxchange” is a multithreaded version of “orb2orb” which supervises multiple “orb2orb” copies specified in a parameter file; it has the option of switching to alternate servers when no data is being copied from the primary. A distributed real time seismic database has been so established by connecting ZAMG, CRS/OGS, DST/UTS and ARSO Antelope servers with “orbxchange” modules. A test of the above described “orbxchange” features has been conducted artificially shutting down the Antelope servers and/or the data links between them: the results in the data coverage of the multiple copies of the distributed database will be shown. The expected improvement in data availability not only will be very useful for the institutional activities (like rapid earthquake location with magnitude estimation) of the four institutions involved in this test, but moreover its natural extension will be in more mission critical applications, like in public civil protection applications and rapid notification of inherent authorities

    Quantum authentication with unitary coding sets

    Get PDF
    A general class of authentication schemes for arbitrary quantum messages is proposed. The class is based on the use of sets of unitary quantum operations in both transmission and reception, and on appending a quantum tag to the quantum message used in transmission. The previous secret between partners required for any authentication is a classical key. We obtain the minimal requirements on the unitary operations that lead to a probability of failure of the scheme less than one. This failure may be caused by someone performing a unitary operation on the message in the channel between the communicating partners, or by a potential forger impersonating the transmitter.Comment: RevTeX4, 10 page

    PMD25 ELICITING WILLINGNESS TO PAY WITHIN THE HEALTH SECTOR WITHOUT BIAS

    Get PDF

    A simple method for the induction of high levels of tyrosinase activity

    Get PDF
    A simple method for the induction of high levels of tyrosinase activit

    Collective fluctuations in networks of noisy components

    Full text link
    Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms, and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is unclear. Here we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with the system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such nontrivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.Comment: 5 figure

    Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles

    Get PDF
    We present an analytical proof and numerical demonstrations of the equivalence of the correlation energy from particle-particle random phase approximation (pp-RPA) and ladder-couple-cluster-doubles (ladder-CCD). These two theories reduce to the identical algebraic matrix equation and correlation energy expressions, under the assumption that the pp-RPA equation is stable. The numerical examples illustrate that the correlation energy missed by pp-RPA in comparison with couple-cluster single and double is largely canceled out when considering reaction energies. This theoretical connection will be beneficial to future pp-RPA studies based on the well established couple cluster theory
    corecore