11,680 research outputs found

    Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus

    Get PDF
    Saccadic omnipause neurons (OPNs) are essential for the generation of saccadic eye movements. In primates OPNs are located near the midline within the nucleus raphe interpositus (rip). In the present study we used several different neuroanatomical methods to investigate the transmitters associated with OPNs in the monkey. Immunolabeling for the calcium-binding protein parvalbumin was employed to mark OPNs in the monkey and define the homologous cell group in cat and human. The use of antibodies against GABA, glycine (GLY), glutamate (GLU), serotonin (5-HT), and tyrosine hydroxylase revealed that the somata of OPNs are GLY immunoreactive, but they are devoid of GABA and 5-HT immunostaining. In situ hybridization with the GAD67 mRNA probe confirmed the negative GABA immunostaining of OPNs. 3H-GLY was injected into a projection field of OPNs, the rostral interstitial nucleus of the medial longitudinal fascicle (riMLF)--the vertical saccadic burst neuron area. This resulted in selective retrograde labeling of the OPNs in rip, while no labeling was found in the superior colliculus, which sends an excitatory projection to the riMLF. The somata and dendrites of putative burst neurons in the riMLF were contacted by numerous GLY- immunoreactive terminals. The quantitative analysis of immunoreactive terminal-like structures contacting OPNs revealed a strong input from GLY- and GABA-positive terminals on somata and dendrites, whereas GLU- positive puncta were mainly confined to the dendrites. Very few 5-HT and catecholaminergic terminals contacted OPN somata. Our findings suggest that OPNs use GLY as a neurotransmitter, and they receive numerous contacts from GABAergic, glycinergic, and glutaminergic afferents, and significantly fewer from monoaminergic inputs.</jats:p

    Entanglement-Saving Channels

    Full text link
    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ\psi is said to be ES if its powers ψn\psi^n are not entanglement-breaking for all integers nn. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps which, not only preserve entanglement for all finite nn, but which also sustain an explicitly not null level of entanglement in the asymptotic limit~n→∞n\rightarrow \infty. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.Comment: 26 page

    Control Plane Compression

    Full text link
    We develop an algorithm capable of compressing large networks into a smaller ones with similar control plane behavior: For every stable routing solution in the large, original network, there exists a corresponding solution in the compressed network, and vice versa. Our compression algorithm preserves a wide variety of network properties including reachability, loop freedom, and path length. Consequently, operators may speed up network analysis, based on simulation, emulation, or verification, by analyzing only the compressed network. Our approach is based on a new theory of control plane equivalence. We implement these ideas in a tool called Bonsai and apply it to real and synthetic networks. Bonsai can shrink real networks by over a factor of 5 and speed up analysis by several orders of magnitude.Comment: Extended version of the paper appearing in ACM SIGCOMM 201

    Dynamical invariants and nonadiabatic geometric phases in open quantum systems

    Full text link
    We introduce an operational framework to analyze non-adiabatic Abelian and non-Abelian, cyclic and non-cyclic, geometric phases in open quantum systems. In order to remove the adiabaticity condition, we generalize the theory of dynamical invariants to the context of open systems evolving under arbitrary convolutionless master equations. Geometric phases are then defined through the Jordan canonical form of the dynamical invariant associated with the super-operator that governs the master equation. As a by-product, we provide a sufficient condition for the robustness of the phase against a given decohering process. We illustrate our results by considering a two-level system in a Markovian interaction with the environment, where we show that the non-adiabatic geometric phase acquired by the system can be constructed in such a way that it is robust against both dephasing and spontaneous emission.Comment: 9 pages, 3 figures. v2: minor corrections and subsection IV.D added. Published versio

    Heterogeneous characters modeling of instant message services users’ online behavior

    Get PDF
    Research on temporal characteristics of human dynamics has attracted much attentions for its contribution to various areas such as communication, medical treatment, finance, etc. Existing studies show that the time intervals between two consecutive events present different non-Poisson characteristics, such as power-law, Pareto, bimodal distribution of power-law, exponential distribution, piecewise power-law, et al. With the occurrences of new services, new types of distributions may arise. In this paper, we study the distributions of the time intervals between two consecutive visits to QQ and WeChat service, the top two popular instant messaging services in China, and present a new finding that when the value of statistical unit T is set to 0.001s, the inter-event time distribution follows a piecewise distribution of exponential and power-law, indicating the heterogeneous character of IM services users’ online behavior in different time scales. We infer that the heterogeneous character is related to the communication mechanism of IM and the habits of users. Then we develop a combination model of exponential model and interest model to characterize the heterogeneity. Furthermore, we find that the exponent of the inter-event time distribution of the same service is different in two cities, which is correlated with the popularity of the services. Our research is useful for the application of information diffusion, prediction of economic development of cities, and so on.National Natural Science Foundation (China) (61201153)National Basic Research Program of China (973 Program) (Grant 2012CB315805)CCF Venus Research Project (CCF-VenustechRP2016004)Jiangsu Industrial Technology Research Institute. Institute of Future Networks Technology (BY2013095-2-16

    An Algorithmic Test for Diagonalizability of Finite-Dimensional PT-Invariant Systems

    Get PDF
    A non-Hermitean operator does not necessarily have a complete set of eigenstates, contrary to a Hermitean one. An algorithm is presented which allows one to decide whether the eigenstates of a given PT-invariant operator on a finite-dimensional space are complete or not. In other words, the algorithm checks whether a given PT-symmetric matrix is diagonalizable. The procedure neither requires to calculate any single eigenvalue nor any numerical approximation.Comment: 13 pages, 1 figur

    Investigating the timecourse of accessing conversational implicatures during incremental sentence interpretation

    Get PDF
    Many contextual inferences in utterance interpretation are explained as following from the nature of conversation and the assumption that participants are rational. Recent psycholinguistic research has focussed on certain of these ‘Gricean’ inferences and have revealed that comprehenders can access them in online interpretation. However there have been mixed results as to the time-course of access. Some results show that Gricean inferences can be accessed very rapidly, as rapidly as any other contextually specified information (Sedivy, 2003; Grodner, Klein, Carbery, & Tanenhaus, 2010); while other studies looking at the same kind of inference suggest that access to Gricean inferences are delayed relative to other aspects of semantic interpretation (Huang & Snedeker, 2009; in press). While previous timecourse research has focussed on Gricean inferences that support the online assignment of reference to definite expressions, the study reported here examines the timecourse of access to scalar implicatures, which enrich the meaning of an utterance beyond the semantic interpretation. Even if access to Gricean inference in support of reference assignment may be rapid, it is still unknown whether genuinely enriching scalar implicatures are delayed. Our results indicate that scalar implicatures are accessed as rapidly as other contextual inferences. The implications of our results are discussed in reference to the architecture of language comprehension

    Generalized Lyapunov Exponent and Transmission Statistics in One-dimensional Gaussian Correlated Potentials

    Full text link
    Distribution of the transmission coefficient T of a long system with a correlated Gaussian disorder is studied analytically and numerically in terms of the generalized Lyapunov exponent (LE) and the cumulants of lnT. The effect of the disorder correlations on these quantities is considered in weak, moderate and strong disorder for different models of correlation. Scaling relations between the cumulants of lnT are obtained. The cumulants are treated analytically within the semiclassical approximation in strong disorder, and numerically for an arbitrary strength of the disorder. A small correlation scale approximation is developed for calculation of the generalized LE in a general correlated disorder. An essential effect of the disorder correlations on the transmission statistics is found. In particular, obtained relations between the cumulants and between them and the generalized LE show that, beyond weak disorder, transmission fluctuations and deviation of their distribution from the log-normal form (in a long but finite system) are greatly enhanced due to the disorder correlations. Parametric dependence of these effects upon the correlation scale is presented.Comment: 18 pages, 11 figure
    • 

    corecore