202 research outputs found

    Holographic Thermodynamics at Finite Baryon Density: Some Exact Results

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplets coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory in the limits of large Nc and large 't Hooft coupling. In particular, we study the theory at finite baryon number density. At zero temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy, and in the supergravity description we clarify which D-brane configuration is appropriate for any given value of the chemical potential. We find a second-order phase transition when the chemical potential equals the mass. At finite temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy at zero mass.Comment: 21 pages, 1 figure; v2 corrected typos, added comments to sections 2.2 and 2.

    Stringy NJL and Gross-Neveu models at finite density and temperature

    Full text link
    Nonlocal stringy versions of the Nambu-Jona-Lasinio and Gross-Neveu models arise in a certain limit of holographic QCD. We analyze the phase structure at finite density and temperature at strong coupling in terms of probe branes in the gravity dual. Comparison with the phase structure of the local field theory models shows qualitative agreement with some aspects, and disagreement with others. Finally, we explain how to construct the Landau potentials for these models by taking the probe branes off-shell.Comment: 32 pages, uses JHEP3.cls; v2, references added, version to be submitted to JHE

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Notes on Properties of Holographic Matter

    Full text link
    Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.Comment: 18 pages, 2 figures; v2: corrected error in Section 6, conclusions unchanged; v3: improved figures and added clarifying comment

    Criticality, Scaling and Chiral Symmetry Breaking in External Magnetic Field

    Full text link
    We consider a D7-brane probe of AdS5×S5AdS_{5}\times S^5 in the presence of pure gauge BB-field. The dual gauge theory is flavored Yang-Mills theory in external magnetic field. We explore the dependence of the fermionic condensate on the bare quark mass mqm_{q} and study the discrete self-similar behavior of the theory near the origin of the parametric space. We calculate the critical exponents of the bare quark mass and the fermionic condensate. A study of the meson spectrum supports the expectation based on thermodynamic considerations that at zero bare quark mass the stable phase of the theory is a chiral symmetry breaking one. Our study reveals the self-similar structure of the spectrum near the critical phase of the theory, characterized by zero fermionic condensate and we calculate the corresponding critical exponent of the meson spectrum.Comment: 29 pages, 9 figures. Accepted in JHEP. Updated to mach the published version. One figure added, some definitions improve

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    Holographic phase transitions at finite baryon density

    Get PDF
    We use holographic techniques to study SU(Nc) super Yang-Mills theory coupled to Nf << Nc flavours of fundamental matter at finite temperature and baryon density. We focus on four dimensions, for which the dual description consists of Nf D7-branes in the background of Nc black D3-branes, but our results apply in other dimensions as well. A non-zero chemical potential mu or baryon number density n is introduced via a nonvanishing worldvolume gauge field on the D7-branes. Ref. [1] identified a first order phase transition at zero density associated with `melting' of the mesons. This extends to a line of phase transitions for small n, which terminates at a critical point at finite n. Investigation of the D7-branes' thermodynamics reveals that (d mu / dn)_T <0 in a small region of the phase diagram, indicating an instability. We comment on a possible new phase which may appear in this region.Comment: 33 pages, 22 figure

    Bulk Filling Branes and the Baryon Density in AdS/QCD with gravity back-reaction

    Full text link
    We consider the gravity back reaction on the metric due to the baryon density in effective ads/qcd model by reconsidering the role of the charged AdS black hole. Previously it has been known that the U(1) charge is dual to the R-charge. Here we point out that if we consider the case where AdS5AdS_5 is completely filled with NfN_f flavor branes, the gravity back reaction produces charged AdS black hole where the effect of charge on the metric is proportional to Nf/NcN_f/N_c. As a consequence, phase diagram changes qualitatively if we allow Nf/NcN_f/N_c finite: it closes at the finite density unlike the probe brane embedding approach. Another issue we discuss here is the question whether there is any chemical potential dependence in the confining phase. We consider this problem in the hard wall model with baryon charge. We conclude that there is a non-trivial dependence on the chemical potential in this case also.Comment: 17 pages 3x2 figures, v2: references added;v3 published version, title change and reference adde

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the DpDqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed DpDqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde

    Holographic Roberge-Weiss Transitions

    Full text link
    We investigate N=4 SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between Z(N) symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in mu^2 when mu^2~0.Comment: 37 pages, 13 figures; minor comments added, to appear in JHE
    corecore