11 research outputs found
Recommended from our members
A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances
This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cassiopeia A, taken overnight on 18â19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10â80 MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR âcoreâ reveals two different velocities in the scintillation pattern: a primary velocity of ~20â40 msâ1 with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of ~110 msâ1 with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller-scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported
FRATs: a real-time search for Fast Radio Transients with LOFAR
Contains fulltext :
83582.pdf (publisher's version ) (Open Access)ISKAF 2010, 10 juni 201
IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays
Contains fulltext :
195234.pdf (publisher's version ) (Closed access)
Contains fulltext :
195234.pdf (preprint version ) (Open Access
Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.
When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds
Lightning Imaging with LOFAR
We show that LOFAR can be used as a lightning mapping array with a resolution that is orders of magnitude better than existing arrays. In addition the polarization of the radiation can be used to track the direction of the stepping discharges
Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021
International audienceCosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report
Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021
International audienceCosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report
Report of the Topical Group on Cosmic Probes of Fundamental Physics for Snowmass 2021
Cosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report