312 research outputs found

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu

    The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Full text link
    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an "extreme-mass ratio inspiral" (EMRI). The small object, typically a stellar black hole (bh), emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map space-time around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic center revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation NN-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M5×106MM_\bullet \lesssim 5 \times 10^6 M_\odot (i.e. nuclei in the range of LISA). SMS has a significant impact boosting the EMRI rates by a factor of 10\sim 10 for our fiducial models of Milky Way type galactic nuclei.Comment: Accepted by CQG, minor changes, a bit expande

    Probing Stellar Dynamics in Galactic Nuclei

    No full text
    Electromagnetic observations over the last 15 years have yielded a growing appreciation for the importance of supermassive black holes (SMBH) to the evolution of galaxies, and for the intricacies of dynamical interactions in our own Galactic center. Here we show that future low-frequency gravitational wave observations, alone or in combination with electromagnetic data, will open up unique windows to these processes. In particular, gravitational wave detections in the 10^{-5}-10^{-1} Hz range will yield SMBH masses and spins to unprecedented precision and will provide clues to the properties of the otherwise undetectable stellar remnants expected to populate the centers of galaxies. Such observations are therefore keys to understanding the interplay between SMBHs and their environments

    The structure of the nuclear stellar cluster of the Milky Way

    Get PDF
    We present high-resolution seeing limited and AO NIR imaging observations of the stellar cluster within about one parsec of Sgr A*, the massive black hole at the centre of the Milky Way. Stellar number counts and the diffuse background light density were extracted from these observations in order to examine the structure of the nuclear stellar cluster.Our findings are as follows: (a) A broken-power law provides an excellent fit to the overall structure of the GC nuclear cluster. The power-law slope of the cusp is Γ=0.19±0.05\Gamma=0.19\pm0.05, the break radius is Rbreak=6.0±1.0R_{\rm break} = 6.0'' \pm 1.0'' or 0.22±0.040.22\pm0.04 pc, and the cluster density decreases with a power-law index of Γ=0.75±0.1\Gamma=0.75\pm0.1 outside of RbreakR_{\rm break}. (b) Using the best velocity dispersion measurements from the literature, we derive higher mass estimates for the central parsec than assumed until now. The inferred density of the cluster at the break radius is 2.8±1.3×106Mpc32.8\pm1.3\times 10^{6} {\rm M_{\odot} pc^{-3}}. This high density agrees well with the small extent and flat slope of the cusp. Possibly, the mass of the stars makes up only about 50% of the total cluster mass. (c) Possible indications of mass segregation in the cusp are found (d) The cluster appears not entirely homogeneous. Several density clumps are detected that are concentrated at projected distances of R=3R=3'' and R=7R=7'' from Sgr A*.(e) There appears to exist an under-density of horizontal branch/red clump stars near R=5R=5'', or an over-density of stars of similar brightness at R=3R=3'' and R=7R=7''. (f) The extinction map in combination with cometary-like features in an L'-band image may provide support for the assumption of an outflow from Sgr A*.Comment: accepted for publication by A&A; please contact first author for higher quality figure

    Extreme Mass Ratio Inspirals: LISA's unique probe of black hole gravity

    Full text link
    In this review article I attempt to summarise past and present-ongoing-work on the problem of the inspiral of a small body in the gravitational field of a much more massive Kerr black hole. Such extreme mass ratio systems, expected to occur in galactic nuclei, will constitute prime sources of gravitational radiation for the future LISA gravitational radiation detector. The article's main goal is to provide a survey of basic celestial mechanics in Kerr spacetime and calculations of gravitational waveforms and backreaction on the small body's orbital motion, based on the traditional `flux-balance' method and the Teukolsky black hole perturbation formalism.Comment: Invited review article, 45 pages, 23 figure

    Observation of the Dynamic Beta Effect at CESR with CLEO

    Get PDF
    Using the silicon strip detector of the CLEO experiment operating at the Cornell Electron-positron Storage Ring (CESR), we have observed that the horizontal size of the luminous region decreases in the presence of the beam-beam interaction from what is expected without the beam-beam interaction. The dependence on the bunch current agrees with the prediction of the dynamic beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.

    Correlated /\c-/\cbar production in e+e- annihilations at sqrt{s}~10.5 GeV

    Full text link
    Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.Comment: 19 pages, Latex, one figure separat

    Study of Charmless Hadronic B Meson Decays to Pseudoscalar-Vector Final States

    Full text link
    We report results of searches for charmless hadronic B meson decays to pseudoscalar(pi^+-,K^+-,Pi^0 or Ks^0)-vector(Rho, K* or Omega) final states. Using 9.7 million BBbar pairs collected with the CLEO detector, we report first observation of B^- --> Pi^-Rho^0, B^0 --> Pi^+-Rho^-+ and B^- --> Pi^-Omega, which are expected to be dominated by hadronic b --> u transitions. The measured branching fractions are (10.4+3.3-3.4+-2.1)x10^-6, (27.6+8.4-7.4+-4.2)x10^-6 and (11.3+3.3-2.9+-1.4)x10^-6, respectively. Branching fraction upper limits are set for all the other decay modes investigated.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore