14 research outputs found

    Probing the Nuclear and Circumnuclear Activity of NGC1365 in the Infrared

    Get PDF
    We present new far-infrared (70-500micron) Herschel PACS and SPIRE imaging observations as well as new mid-IR Gemini/T-ReCS imaging (8.7 and 18.3micron) and spectroscopy of the inner Lindblad resonance (ILR) region (R<2.5kpc) of the spiral galaxy NGC1365. We complemented these observations with archival Spitzer imaging and spectral mapping observations. The ILR region of NGC1365 contains a Seyfert 1.5 nucleus and a ring of star formation with an approximate diameter of 2kpc. The strong star formation activity in the ring is resolved by the Herschel/PACS imaging data, as well as by the Spitzer 24micron continuum emission, [NeII]12.81micron line emission, and 6.2 and 11.3micron PAH emission. The AGN is the brightest source in the central regions up to lambda~24micron, but it becomes increasingly fainter in the far-infrared when compared to the emission originating in the infrared clusters (or groups of them) located in the ring. We modeled the AGN unresolved infrared emission with the CLUMPY torus models and estimated that the AGN contributes only to a small fraction (~5%) of the infrared emission produced in the inner ~5kpc. We fitted the non-AGN 24-500micron spectral energy distribution of the ILR region and found that the dust temperatures and mass are similar to those of other nuclear and circumnuclear starburst regions. Finally we showed that within the ILR region of NGC1365 most of the on-going star formation activity is taking place in dusty regions as probed by the 24micron emission.Comment: Accepted for publication in MNRA

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial

    No full text
    PURPOSE: Radiotherapy with concomitant and adjuvant temozolomide is the standard of care for newly diagnosed glioblastoma (GBM). O(6)-methylguanine-DNA methyltransferase (MGMT) methylation status may be an important determinant of treatment response. Dose-dense (DD) temozolomide results in prolonged depletion of MGMT in blood mononuclear cells and possibly in tumor. This trial tested whether DD temozolomide improves overall survival (OS) or progression-free survival (PFS) in patients with newly diagnosed GBM. PATIENTS AND METHODS: This phase III trial enrolled patients older than age 18 years with a Karnofsky performance score of ≥ 60 with adequate tissue. Stratification included clinical factors and tumor MGMT methylation status. Patients were randomly assigned to standard temozolomide (arm 1) or DD temozolomide (arm 2) for 6 to 12 cycles. The primary end point was OS. Secondary analyses evaluated the impact of MGMT status. RESULTS: A total of 833 patients were randomly assigned to either arm 1 or arm 2 (1,173 registered). No statistically significant difference was observed between arms for median OS (16.6 v 14.9 months, respectively; hazard ratio [HR], 1.03; P = .63) or median PFS (5.5 v 6.7 months; HR, 0.87; P = .06). Efficacy did not differ by methylation status. MGMT methylation was associated with improved OS (21.2 v 14 months; HR, 1.74; P < .001), PFS (8.7 v 5.7 months; HR, 1.63; P < .001), and response (P = .012). There was increased grade ≥ 3 toxicity in arm 2 (34% v 53%; P < .001), mostly lymphopenia and fatigue. CONCLUSION: This study did not demonstrate improved efficacy for DD temozolomide for newly diagnosed GBM, regardless of methylation status. However, it did confirm the prognostic significance of MGMT methylation. Feasibility of large-scale accrual, prospective tumor collection, and molecular stratification was demonstrated

    Genetics of Familial Hypercholesterolemia

    No full text
    Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics

    Diffuse X-Ray-emitting Gas in Major Mergers

    Get PDF
    Using archived data from the Chandra X-ray telescope, we have extracted the diffuse X-ray emission from 49 equal-mass interacting/merging galaxy pairs in a merger sequence, from widely separated pairs to merger remnants. After the removal of contributions from unresolved point sources, we compared the diffuse thermal X-ray luminosity from hot gas (L X (gas)) with the global star formation rate (SFR). After correction for absorption within the target galaxy, we do not see a strong trend of L X (gas)/SFR with the SFR or merger stage for galaxies with SFR &gt; 1 Myr -1 . For these galaxies, the median L X (gas)/SFR is 5.5 ×10 39 ((erg s -1 )/Myr -1 )), similar to that of normal spiral galaxies. These results suggest that stellar feedback in star-forming galaxies reaches an approximately steady-state condition, in which a relatively constant fraction of about 2% of the total energy output from supernovae and stellar winds is converted into X-ray flux. Three late-stage merger remnants with low SFRs and high K-band luminosities (L K ) have enhanced L X (gas)/SFR; their UV/IR/optical colors suggest that they are post-starburst galaxies, perhaps in the process of becoming ellipticals. Systems with L K &lt; 10 10 L have lower L X (gas)/SFR ratios than the other galaxies in our sample, perhaps due to lower gravitational fields or lower metallicities. We see no relation between L X (gas)/SFR and Seyfert activity in this sample, suggesting that feedback from active galactic nuclei is not a major contributor to the hot gas in our sample galaxies

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface

    No full text
    corecore