4 research outputs found

    Computational Fluid Dynamic Analysis of a High-Pressure Spatial Chemical Vapor Deposition (HPS-CVD) Reactor for Flow Stability

    No full text
    High indium-content group-III nitrides are of interest to further expand upon our ability to produce highly efficient optical emitters at longer visible/IR wavelengths or to broaden bandgap engineering opportunities in the group-III nitride material system. Current synthesis approaches are limited in their capabilities, in part due to the low decomposition temperature of indium nitride. A new high-pressure spatial chemical vapor deposition (HPS-CVD) has been proposed which can operate at pressures up to 100 atmospheres, thereby significantly raising the growth temperature of indium nitride more than 100 kelvins and permitting the investigation of the impact of pressure on precursor stability and reactivity. This study systematically analyzes an HPS-CVD reactor design using computational fluid dynamic modeling in order to understand favorable operating conditions for growth of group III nitrides. Specifically, the relationship between inlet gas type (nitrogen, hydrogen, or ammonia), inlet gas velocity, gas flow rate, and rotational speed of the wafer carrier is evaluated for conditions under which a smooth and dominant vortex-free flow are obtained over the wafer. Heater power was varied to maintain a wafer temperature of 1250–1300 K. Favorable operating conditions were identified that were simultaneously met for all three gas types, providing a stable operating window for a wide range of gas chemistries for growth; at one atmosphere, a disk rotational speed of 50 rpm and a flow rate of 12 slm for all gas types is desired

    Phylogenetic analysis and genotyping of Iranian infectious haematopoietic necrosis virus (IHNV) of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene

    No full text
    Abstract Background Infectious haematopoietic necrosis (IHN) is known as one of the most contagious systemic viral diseases in salmonids which can lead to significant mortality rates and negative impacts on the salmonid farming industry. Infectious haematopoietic necrosis virus (IHNV) was first detected in rainbow trout (Oncorhynchus mykiss) farms in Iran in 2003. Objectives We conducted the present study to determine the detection of IHN genotypes in rainbow trout (O. mykiss) in farms in the central parts of Iran, using molecular and phylogenetic techniques. Methods Samples were collected from fries exhibiting clinical signs such as darkening of the skin, abdominal swelling, and loss of appetite. Phylogenetic analysis was performed by the neighbour‐joining method, using MEGA 5.1 software. For phylogenetic analysis and genotyping of IHNV from central parts of Iran, the sequences of the glycoprotein gene were determined for two Iranian isolates (Jahad‐UT1 and Jahad‐UT2). Results Phylogenetic analysis revealed that the detected strains (Jahad‐UT1 and Jahad‐UT2 isolates) are closely related (97.23%–100%) to European isolates within genogroup ‘E’. Conclusions This finding indicates that Jahad‐UT1 and Jahad‐UT2 isolates have been widely transferred to Iran from European countries. Moreover, the nucleotide diversity of these Iranian isolates showed a close relationship with the North American and Asian isolates, although the Iranian isolates were collected from a smaller geographical area and within a shorter time period between 2014 and 2015
    corecore