3,506 research outputs found

    Instantons in the QCD Vacuum and in Deep Inelastic Scattering

    Full text link
    We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory.Comment: 6 pages, 5 figures, talk presented at the 7th International Workshop on Deep Inelastic Scattering and QCD (DIS 99), Zeuthen/Germany, April 19-23, 1999; to be published in the Proceedings (Nuclear Physics B (Proc. Suppl.)

    On the zero of the fermion zero mode

    Full text link
    We argue that the fermionic zero mode in non-trivial gauge field backgrounds must have a zero. We demonstrate this explicitly for calorons where its location is related to a constituent monopole. Furthermore a topological reasoning for the existence of the zero is given which therefore will be present for any non-trivial configuration. We propose the use of this property in particular for lattice simulations in order to uncover the topological content of a configuration.Comment: 6 pages, 3 figures in 5 part

    Strong to weak coupling transitions of SU(N) gauge theories in 2+1 dimensions

    Get PDF
    We investigate strong-to-weak coupling transitions in D=2+1 SU(N->oo) gauge theories, by simulating lattice theories with a Wilson plaquette action. We find that there is a strong-to-weak coupling cross-over in the lattice theory that appears to become a third-order phase transition at N=oo, in a manner that is essentially identical to the Gross-Witten transition in the D=1+1 SU(oo) lattice gauge theory. There is also evidence for a second order transition at N=oo at approximately the same coupling, which is connected with centre monopoles (instantons) and so analogues to the first order bulk transition that occurs in D=3+1 lattice gauge theories for N>4. We show that as the lattice spacing is reduced, the N=oo gauge theory on a finite 3-torus suffers a sequence of (apparently) first-order ZN symmetry breaking transitions associated with each of the tori (ordered by size). We discuss how these transitions can be understood in terms of a sequence of deconfining transitions on ever-more dimensionally reduced gauge theories.We investigate whether the trace of the Wilson loop has a non-analyticity in the coupling at some critical area, but find no evidence for this although, just as in D=1+1,the eigenvalue density of a Wilson loop forms a gap at N=oo for a critical trace. The physical implications of this are unclear.The gap formation is a special case of a remarkable similarity between the eigenvalue spectra of Wilson loops in D=1+1 and D=2+1 (and indeed D=3+1): for the same value of the trace, the eigenvalue spectra are nearly identical.This holds for finite as well as infinite N; irrespective of the Wilson loop size in lattice units; and for Polyakov as well as Wilson loops.Comment: 44 pages, 28 figures. Extensive changes and clarifications with new results on non-analyticities and eigenvalue spectra of Wilson loops. This version to be submitted for publicatio

    Black Hole Evaporation without Information Loss

    Full text link
    An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into "hard" particles and "soft" particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the SS-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.Comment: 35 pages (including Figures); TEX, 3 figures in postscrip

    Chern-Simons term in the 4-dimensional SU(2) Higgs Model

    Get PDF
    Using Seiberg's definition for the geometric charge in SU(2) lattice gauge theory, we have managed to apply it also to the Chern-Simons term. We checked the periodic structure and determined the Chern-Simons density on small lattices L4L^4 and L3×2, 4L^3 \times 2,\, 4 with L=4,\, 6,\mbox{ and }8 near the critical region in the SU(2) Higgs model. The data indicate that tunneling is increased at high temperature.Comment: 7 pages plus 4 PS figure

    phi-fourth model on a circle

    Get PDF
    The four dimensional critical scalar theory at equilibrium with a thermal bath at temperature TT is considered. The thermal equilibrium state is labeled by nn the winding number of the vacua around the compact imaginary-time direction which compactification radius is 1/T. The effective action for zero modes is a three dimensional ϕ4\phi^4 scalar theory in which the mass of the the scalar field is proportional to n/Tn/T resembling the Kaluza-Klein dimensional reduction. Similar results are obtained for the theory at zero temperature but in a one-dimensional potential well. Since parity is violated by the vacua with odd vacuum number nn, in such cases there is also a cubic term in the effective potential. The ϕ3\phi^3-term contribution to the vacuum shift at one-loop is of the same order of the contribution from the ϕ4\phi^4-term in terms of the coupling constant of the four dimensional theory but becomes negligible as nn tends to infinity. Finally, the relation between the scalar classical vacua and the corresponding SU(2) instantons on S1×R3S^1\times{\mathbb R}^3 in the 't Hooft ansatz is studied.Comment: 9 pages, revtex4, to appear in Phys.Lett.

    The scalar glueball spectrum

    Get PDF
    We discuss scenarios for scalar glueballs using arguments based on sum rules, spectral decomposition, the 1Nc\frac{1}{N_c} approximation, the scales of the strong interaction and the topology of the flux tubes. We analyze the phenomenological support of those scenarios and their observational implications. Our investigations hint a rich low lying glueball spectrum.Comment: 11 pages: New title, figure, table and a more detailed comparison with experiment

    Baryons in QCD_{AS} at Large N_c: A Roundabout Approach

    Full text link
    QCD_{AS}, a variant of large N_c QCD in which quarks transform under the color two-index antisymmetric representation, reduces to standard QCD at N_c = 3 and provides an alternative to the usual large N_c extrapolation that uses fundamental representation quarks. Previous strong plausibility arguments assert that the QCD_{AS} baryon mass scales as N_c^2; however, the complicated combinatoric problem associated with quarks carrying two color indices impeded a complete demonstration. We develop a diagrammatic technique to solve this problem. The key ingredient is the introduction of an effective multi-gluon vertex: a "traffic circle" or "roundabout" diagram. We show that arbitrarily complicated diagrams can be reduced to simple ones with the same leading N_c scaling using this device, and that the leading contribution to baryon mass does, in fact, scale as N_c^2.Comment: 9 pages, 9 pdf figures, ReVTeX with pdflate

    Algebraic renormalization of the BF Yang-Mills Theory

    Get PDF
    We discuss the quantum equivalence, to all orders of perturbation theory, between the Yang-Mills theory and its first order formulation through a second rank antisymmetric tensor field. Moreover, the introduction of an additional nonphysical vector field allows us to interpret the Yang-Mills theory as a kind of perturbation of the topological BF model.Comment: 14 pages, some references and acknowledgments added, version to appear in Phys.Lett.

    Elaborations on the String Dual to N=1 SQCD

    Full text link
    In this paper we make further refinements to the duality proposed between N=1 SQCD and certain string (supergravity plus branes) backgrounds, working in the regime of comparable large number of colors and flavors. Using the string theory solutions, we predict different field theory observables and phenomena like Seiberg duality, gauge coupling and its running, the behavior of Wilson and 't Hooft loops, anomalous dimensions of the quark superfields, quartic superpotential coupling and its running, continuous and discrete anomaly matching. We also give evidence for the smooth interpolation between higgsed and confining vacua. We provide several matchings between field theory and string theory computations.Comment: 44 pages, 6 figures. References added, minor rewritings, published versio
    • …
    corecore