9 research outputs found

    Grand challenges in entomology: priorities for action in the coming decades

    Get PDF
    1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. 2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). 3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. 4. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). 5. Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. 6. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Data from: High specialization and limited structural change in plant‐herbivore networks along a successional chronosequence in tropical montane forest

    No full text
    Secondary succession is well‐understood, to the point of being predictable for plant communities, but the successional changes in plant‐herbivore interactions remains poorly explored. This is particularly true for tropical forests, despite the increasing importance of early successional stages in tropical landscapes. Deriving expectations from successional theory, we examine properties of plant‐herbivore interaction networks while accounting for host phylogenetic structure along a succession chronosequence in montane rainforest in Papua New Guinea. We present one of the most comprehensive successional investigations of interaction networks, equating to >40 person years of field sampling, and one of the few focused on montane tropical forests. We use a series of nine 0.2ha forest plots across young secondary, mature secondary and primary montane forest, sampled almost completely for woody plants and larval leaf chewers (Lepidoptera), using forest felling. These networks comprised of 12,357 plant‐herbivore interactions and were analysed using quantitative network metrics, a phylogenetically controlled host‐use index and a qualitative network beta diversity measure. Network structural changes were low and specialisation metrics surprisingly similar throughout succession, despite high network beta diversity. Herbivore abundance was greatest in the earliest stages, and hosts here had more species‐rich herbivore assemblages, presumably reflecting higher palatability due to lower defensive investment. All herbivore communities were highly specialised, using a phylogenetically narrow set of hosts, while host phylogenetic diversity itself decreased throughout the chronosequence. Relatively high phylogenetic diversity, and thus high diversity of plant defenses, in early succession forest may result in herbivores feeding on fewer hosts than expected. Successional theory, derived primarily from temperate systems, is limited in predicting tropical host‐herbivore interactions. All succession stages harbour diverse and unique interaction networks, which together with largely similar network structures and consistent host use patterns, suggests general rules of assembly may apply to these systems

    Removing understory vegetation in oil palm agroforestry reduces ground-foraging ant abundance but not species richness

    No full text
    Ants are known to provide valuable ecosystem services in agricultural landscapes, including oil palm plantations. Their communities are less diverse and more uneven in oil palm compared with forest, and this may increase their vulnerability to disturbance. This study quantifies ant communities in oil palm agroforestry and experimentally tests their robustness to a common-practice high-disturbance management intervention: removing understory vegetation. Fieldwork was based at the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Understory Vegetation Project in Sumatra, Indonesia, where three treatments varying in their degree of understory vegetation management were established in 2014: (1) widespread herbicide was applied removing all understory vegetation (Reduced); (2) herbicide was applied to the harvesting paths and circles, and other vegetation was allowed to grow (Normal &ndash; control); (3) no herbicide was applied (Enhanced). We measured ground-foraging ant communities before and after the treatments were implemented, using pitfall traps over 324 trap-nights (a trap-night is one trap set for one night). We investigated how ant abundance, species richness, species evenness, beta diversity, and community composition differed between the treatments. We found 3507 ants across 68 species or morphospecies. Seven of these were highly abundant and accounted for 78% of individuals. Post-treatment ant abundance was lower in the reduced treatment (mean per plot: 84) than in the normal (159) and enhanced (131) treatments, which did not differ from each other. Species richness, species evenness, beta diversity and community composition were not affected by the vegetation treatments. We recommend that oil palm growers maintain understory vegetation in oil palm plantations to support ground-foraging ants. Though not tested here, this may also improve ant-mediated ecosystem services, such as pest control, seed dispersal, nutrient redistribution, and the maintenance of soil health. This study demonstrates that enhancing habitat complexity through management practices can support biodiversity in monocrop landscapes.,Fieldwork was based in oil palm plantations at the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Understory Vegetation Project in Sumatra, Indonesia, where three treatments varying in their degree of understory vegetation management were established in February 2014: Reduced complexity (Reduced): Mature first-generation plantation with all understory vegetation removed by spraying herbicide. Normal complexity (Normal): Mature first-generation plantation with understory vegetation removed from the harvesting paths and harvesting circle (a ~1.5m radius area around the base of each palm) using herbicide, and large woody vegetation removed manually. Other vegetation was allowed to grow. This is standard industry practice in these estates. Enhanced complexity (Enhanced): Mature first-generation plantation with the same understory management as the normal complexity, except harvesting paths and circles were cleared by strimming rather than herbicide. We measured ground-foraging ant communities before (March-April 2013) and after (September 2014) the treatments were implemented. We set three pitfall traps in each plot. Traps were 50 m apart, arranged in an equilateral triangle that was centred in each plot. Each trap was active for three days. This amounted to 108 traps over 324 trap-nights. Traps consisted of circular 20 cm diameter funnels, leading to a pot of 75% alcohol. Worker ants were identified to genus using keys, and to morphospecies or species where possible.,There are one dataset which shows the abundance of each ant morphospecies and their genus. One species (MS.5 Pheidole in dataset or Pheidole sp.1 in manuscript) may be a multispecies complex, as workers varied in size and colouration; there were no clear divisions along which to assign different species, so all individuals in this group were combined into a single morphospecies.,</span

    Co-producing a Research Agenda for Sustainable Palm Oil

    No full text
    The rise of palm oil as the world's most consumed vegetable oil has coincided with exponential growth in palm oil research activity. Bibliometric analysis of research outputs reveals a distinct imbalance in the type of research being undertaken, notably a disproportionate focus on biofuel and engineering topics. Recognizing the expansion of oil palm agriculture across the tropics and the increasing awareness of environmental, social, and economic impacts, we seek to reorientate the existing research agenda toward one that addresses the most fundamental and urgent questions defined by the palm oil stakeholder community. Following consultation with 659 stakeholders from 38 countries, including palm oil growers, government agencies, non-governmental organizations, and researchers, the highest priority research questions were identified within 13 themes. The resulting 279 questions, including 26 ranked as top priority, reveal a diversity of environmental and social research challenges facing the industry, ranging from the ecological and ecosystem impacts of production, to the livelihoods of plantation workers and smallholder communities. Analysis of the knowledge type produced from these questions underscores a clear need for fundamental science programmes, and studies that involve the consultation of non-academic stakeholders to develop “transformative” solutions to the oil palm sector. Stakeholders were most aligned in their choice of priority questions across the themes of policy and certification related themes, and differed the most in environmental feedback, technology and smallholder related themes. Our recommendations include improved regional academic leadership and coordination, greater engagement with private and public stakeholders in Africa, and Central and South America, and enhanced collaborative efforts with researchers in the major consuming countries of India and China
    corecore