86 research outputs found

    Adipocyte fatty acid binding protein potentiates toxic lipids-induced endoplasmic reticulum stress via its inhibition of autophagy

    Get PDF
    Oral PresentationINTRODUCTION: Chronic inflammation is the key link between obesity and its related cardio-metabolic complications. Endoplasmic reticulum (ER) stress is the potent trigger of inflammation in obese adipose tissue. However, the mechanism that links ER stress with inflammation is unclear. Adipocyte fatty acid binding protein (A-FABP) has been shown to ...published_or_final_versionThe 17th Medicial Research Conference, Department of Medicine, The University of Hong Kong, 14 January 2012. In Hong Kong Medical Journal, 2012, v. 18 n. 1, suppl. 1, p. 25, abstract no. 2

    Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone

    Get PDF
    published_or_final_versio

    Inactivation of toll-like receptor 4 improves reendothelialisation in ApoE-deficient mice: impact of oxidative stress on endothelial progenitor cells

    Get PDF
    Oral presentationpublished_or_final_versionThe 15th Annual Research Conference of the Department of Medicine, The University of Hong Kong, Hong Kong, 16 January 2010. In Hong Kong Medical Journal, 2010, v. 16, suppl. 1, p. 37, abstract no. 5

    Adipocyte fatty acid-binding protein potentiates toxic lipids-induced endoplasmic reticulum stress via suppression of JAK2-dependent autophagy

    Get PDF
    Oral PresentationINTRODUCTION: Chronic inflammation is the key link between obesity and its related metabolic complications. Endoplasmic reticulum (ER) stress is the potent trigger of inflammation in obese adipose tissue but how ER stress in immune cells relates to inflammation is unclear. Adipocyte fatty acid–binding protein (A-FABP) regulates endotoxin-induced inflammation in macrophages by forming a positive feedback loop with c-Jun-N terminal kinase (JNK) which is the downstream regulator of ER stress. Defective autophagy is shown in obese liver which leads to insulin resistance and elevated ER stress. Here we investigate the role of A-FABP in association with autophagy in potentiating toxic lipids-induced ER stress in macrophages …published_or_final_versio

    Adipose-Specific Inactivation of JNK Alleviates Atherosclerosis in ApoE-deficient Mice

    Get PDF
    Both atherosclerosis and obesity, an independent atherosclerotic risk factor, are associated with enhanced systemic inflammation. Obesity is also characterised by increased adipose tissue inflammation. However, the molecular mechanism underlying the accelerated atherosclerosis in obesity remains unclear. In obesity, activation of c-Jun N-terminal kinase (JNK) contributes to adipose tissue inflammation. This study investigated whether the suppression of fat inflammation through adipose-specific JNK inactivation could protect against atherosclerosis in mice. ApoE-/- mice were crossbred with transgenic mice with adipose-specific expression of a dominant negative form of JNK (dnJNK) to generate apoE-/-/dnJNK (ADJ) mice. High-fat-high-cholesterol diet-treated ADJ mice exhibited significant attenuations of visceral fat and systemic inflammation without changes in lipid or glucose metabolism, and were protected against atherosclerosis, when compared to apoE-/- mice. Lean apoE-/- mice that received transplantation of visceral fat from obese wild-type donor mice for 4 weeks showed exacerbated systemic inflammation and atherosclerotic plaque formation. Conversely, apoE-/- recipients carrying visceral fat graft from obese dnJNK donors were protected against enhanced systemic inflammation and atherogenesis. The beneficial effects of adipose-specific JNK inactivation on atherogenesis in apoE-/- recipients were significantly compromised by continuous infusion of recombinant adipocyte-fatty acid binding protein (A-FABP), previously shown to interact with JNK via a positive feedback loop to modulate inflammatory responses. Together these data suggested that enhanced atherosclerosis in obesity can be attributed, at least in part, to a distant cross-talk between visceral fat and the vasculature, mediated by the release of pro-inflammatory cytokines, such as A-FABP, from the inflamed visceral adipose tissue with JNK activation.postprin

    Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    Get PDF
    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases.published_or_final_versio

    A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes

    Get PDF
    The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver X receptor α, thereby leading to the conversion of thyroid hormone from its inactive form T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated adaptive thermogenesis.published_or_final_versio

    Deficiency of adipocyte fatty-acid-binding protein alleviates myocardial ischaemia/reperfusion injury and diabetes-induced cardiac dysfunction

    Get PDF
    Clinical evidence shows that circulating levels of adipocyte fatty-acid-binding protein (A-FABP) are elevated in patients with diabetes and closely associated with ischaemic heart disease. Patients with diabetes are more susceptible to myocardial ischaemia/reperfusion (MI/R) injury. The experiments in the present study investigated the role of A-FABP in MI/R injury with or without diabetes. Non-diabetic and diabetic (streptozotocin-induced) A-FABP knockout and wild-type mice were subjected to MI/R or sham intervention. After MI/R, A-FABP knockout mice exhibited reductions in myocardial infarct size, apoptotic index, oxidative and nitrative stress, and inflammation. These reductions were accompanied by an improved left ventricular function compared with the relative controls under non-diabetic or diabetic conditions. After diabetes induction, A-FABP knockout mice exhibited a preserved cardiac function compared with that in wild-type mice. Endothelial cells, but not cardiomyocytes, were identified as the most likely source of cardiac A-FABP. Cardiac and circulating A-FABP levels were significantly increased in mice with diabetes or MI/R. Diabetes-induced superoxide anion production was significantly elevated in wild-type mice, but diminished in A-FABP knockout mice, and this elevation contributed to the exaggeration of MI/R-induced cardiac injury. Phosphorylation of endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) were enhanced in both diabetic and non-diabetic A-FABP knockout mice after MI/R injury, but diminished in wild-type mice. The beneficial effects of A-FABP deficiency on MI/R injury were abolished by the NOS inhibitor N(G)-nitro-L-arginine methyl ester. Thus, A-FABP deficiency protects mice against MI/R-induced and/or diabetes-induced cardiac injury at least partially through activation of the eNOS/NO pathway and reduction in superoxide anion production

    Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice

    Get PDF
    BACKGROUND: Insulin resistance is the major pathogenesis underlying type 2 diabetes mellitus (T2DM) and these patients have doubled risk of Alzheimer's disease (AD). Increasing evidence suggests that insulin resistance plays an important role in AD pathogenesis, possibly due to abnormal GSK3β activation, causing intra- and extracellular amyloid-beta (Aβ) accumulation. Adiponectin (APN) is an adipokine with insulin-sensitizing and anti-inflammatory effects. Reduced circulatory APN level is associated with insulin resistance and T2DM. The role of APN in AD has not been elucidated. In this study, we aim to examine if adiponectin deficiency would lead to cerebral insulin resistance, cognitive decline and Alzheimer's-like pathology in mice. METHODS: To study the role of adiponectin in cognitive functions, we employed adiponectin-knockout (APN-KO) mice and demonstrated chronic APN deficiency in their CNS. Behavioral tests were performed to study the cognitions of male APN-KO mice. Brains and tissue lysates were collected to study the pathophysiological and molecular changes in the brain of APN-KO mice. SH-SY5Y neuroblastoma cell line was used to study the molecular mechanism upon APN and insulin treatment. RESULTS: Aged APN-deficient mice displayed spatial memory and learning impairments, fear-conditioned memory deficit as well as anxiety. These mice also developed AD pathologies including increased cerebral Aβ42 level, Aβ deposition, hyperphosphorylated Tau proteins, microgliosis and astrogliosis with increased cerebral IL-1β and TNFα levels that associated with increased neuronal apoptosis and reduced synaptic proteins levels, suggesting APN deficiency may lead to neuronal and synaptic loss in the brain. AD pathologies-associated APN-KO mice displayed attenuated AMPK phosphorylation and impaired insulin signaling including decreased Akt induction and increased GSK3β activation in the hippocampus and frontal cortex. Aged APN-KO mice developed hippocampal insulin resistance with reduced pAkt induction upon intracerebral insulin injection. Consistently, APN treatment in SH-SY5Y cells with insulin resistance and overexpressing Aβ induce higher pAkt levels through AdipoR1 upon insulin treatment whereas the induction was blocked by compound C, indicating APN can enhance neuronal insulin sensitivity through AMPK activation. CONCLUSION: Our results indicated that chronic APN deficiency inactivated AMPK causing insulin desensitization and elicited AD-like pathogenesis in aged mice which also developed significant cognitive impairments and psychiatric symptoms.published_or_final_versio
    • …
    corecore