1,107 research outputs found
Unipolar Resistance Switching in Amorphous High-k dielectrics Based on Correlated Barrier Hopping Theory
We have proposed a kind of nonvolatile resistive switching memory based on
amorphous LaLuO3, which has already been established as a promising candidate
of high-k gate dielectric employed in transistors. Well-developed unipolar
switching behaviors in amorphous LaLuO3 make it suited for not only logic but
memory applications using the conventional semiconductor or the emerging
nano/CMOS architectures. The conduction transition between high- and low-
resistance states is attributed to the change in the separation between oxygen
vacancy sites in the light of the correlated barrier hopping theory. The mean
migration distances of vacancies responsible for the resistive switching are
demonstrated in nanoscale, which could account for the ultrafast programming
speed of 6 ns. The origin of the distributions in switching parameters in
oxides can be well understood according to the switching principle.
Furthermore, an approach has also been developed to make the operation voltages
predictable for the practical applications of resistive memories.Comment: 18 pages, 6 figure
Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster
In this work, we propose FastCoT, a model-agnostic framework based on
parallel decoding without any further training of an auxiliary model or
modification to the LLM itself. FastCoT uses a size-varying context window
whose size changes with position to conduct parallel decoding and
auto-regressive decoding simultaneously, thus fully utilizing GPU computation
resources. In FastCoT, the parallel decoding part provides the LLM with a quick
glance of the future composed of approximate tokens, which could lead to faster
answers compared to regular autoregressive decoding used by causal
transformers. We also provide an implementation of parallel decoding within
LLM, which supports KV-cache generation and batch processing. Through extensive
experiments, we demonstrate that FastCoT saves inference time by nearly 20%
with only a negligible performance drop compared to the regular approach.
Additionally, we show that the context window size exhibits considerable
robustness for different tasks
A Research on Community-Based Livestock of Qinghai-Tibet Plateau
Qinghai-Tibet Plateau locates in Southwestern China, covering the whole area of Tibet Autonomous Region, Qinghai Province, Southern part of Gansu Province, Northwestern part of Sichuan Province and Northwestern part of Yunnan Province, with an area of around 139.08 million hectares of natural grassland, accounting for 39% of the total area of natural grassland in China. It is also the largest natural ecozones in China and one of the least disturbed regions by human activities, with its air, water sources, soil, grassland, wildlife in their pristine state.
Qinghai-Tibet Plateau is the native home for Tibetan people. Grassland animal husbandry is the foundation of the economy of QTP and the main source of livelihood for local nomadic people. During the long term of concerted evolution with the nature, Tibetan people living on Qinghai-Tibet Plateau have formed a uniquely holistic grassland ecological culture that is compatible with their production system and the ecosystem. The majority of Tibetan people observe Tibetan Buddhism. Their respect for nature and their belief in that all sentient beings are equal take deep root in their traditional culture. Their harmonious co-existence with nature exemplifies the eco-civilization ideas and provides a solid cultural foundation for both ecology conservation and featured animal husbandry development.
On Qinghai-Tibet Plateau, national policies and initiatives such as dual contract of livestock and forage, natural grassland vegetation recovery, returning grazing land to grassland, grassland ecosystem subsidy and rewarding mechanism have been implemented, playing an important role in promoting grassland ecosystem conservation and grassland animal husbandry development. However, since grassland animal husbandry is a complex system involving grassland, farm animal, environment, society, economy, culture, etc, there are still many outstanding problems to be solved
Research on Direct Detection Method and Performance of Single-photon Counting Terahertz Radar
The conventional terahertz radar suffers from limited operation range for long-distance, noncooperative target detection due to the low transmitter power and atmospheric attenuation effect, both of which pose a hindrance in meeting the requirements of warning detection applications. To improve the radar detection capability, this paper studies an ultrasensitive target detection method based on single-photon detectors to replace traditional radar receivers. The method is expected to considerably expand the operation range of terahertz radars. First, the statistical law of the number of echo photons of a terahertz single-photon radar system is analyzed, and the echo characteristics of the target are expounded from a microscopic perspective. Furthermore, a terahertz single-photon target detection model, incorporating the characteristics of a quantum capacitor detector, is established. In addition, the mathematical expression of the target detection performance is derived, and the performance is evaluated via simulations. Further, a target detection performance curve is obtained. Finally, a time-resolved terahertz photon-counting mechanism experiment is performed, wherein we realize high-precision ranging by counting echo pulses. This work can provide support for the research and development of ultrasensitive target detection technologies and single-photon radar systems in the terahertz band
Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters
Recently, high-performance thin-film lithium niobate optical modulators have emerged that, together with advanced multiplexing technologies, are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels. Accordingly, in this study, a compact lithium-niobate-on-insulator (LNOI) photonic chip was adopted to establish four-channel wavelength-division-multiplexing (WDM) transmitters, comprising four optical modulators based on ultracompact 2 × 2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings. The fabricated chip with four wavelength channels has a total footprint as compact as 0.3 × 2.8 mm2, and exhibits an excess loss of ~0.8 dB as well as low inter-channel crosstalk of < –22 dB. Using this LNOI photonic chip, high-capacity data transmissions of 320 Gbps (4 × 80 Gbps) on-off-keying signals and 400 Gbps (4 × 100 Gbps) four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit
Environmental Molecular Effect on the Macroscale Friction Behaviors of Graphene
This study investigated the friction behavior of graphene in air and nitrogen atmosphere environments. The microstructural evolution caused by the variation of atmosphere environments and its effect on the friction coefficient of the graphene is explored. It is demonstrated that graphene can exhibit excellent lubricating properties both in air and nitrogen atmosphere environments. In air, a highly ordered layer-by-layer slip structure can be formed at the sliding interface. Oxygen and H2O molecules can make edge dangling bonds and defects passive. Thus the interaction between the nanosheets and the layers of nanosheets is weak and the friction coefficient is low (0.06–0.07). While the friction coefficient increases to 0.14–0.15 in a nitrogen atmosphere due to the interaction of defects generated in the sliding process, the nitrogen molecules with lone pair electrons can only make the nanosheets passive to a certain degree, thus the ordered slip structure is destroyed and friction is higher. This work reveals the influence of environmental molecules on the macroscale tribological performances of graphene and its effect on the microstructure at the sliding interface, which could shed light on the lubricating performance of graphene in environmental atmospheres and help us to understand the tribological behaviors of graphite at the macroscale
Evolutionary Characterization of the Pandemic H1N1/ 2009 Influenza Virus in Humans Based on Non-Structural Genes
The 2009 influenza pandemic had a tremendous social and economic impact. To study the genetic diversity and evolution of the 2009 H1N1 virus, a mutation network for the non-structural (NS) gene of the virus was constructed. Strains of the 2009 H1N1 pandemic influenza A virus could be divided into two categories based on the V123I mutation in the NS1 gene: G1 (characterized as 123 Val) and G2 (characterized as 123 Ile). Sequence homology analysis indicated that one type of NS sequence, primarily isolated from Mexico, was likely the original type in this pandemic. The two genotypes of the virus presented distinctive clustering features in their geographic distributions. These results provide additional insight into the genetics and evolution of human pandemic influenza H1N1
Preliminary study on involving field irradiation radiotherapy in neoadjuvant chemoradiotherapy for esophageal cancer
Background and purpose: The standard treatment for patients with locally advanced esophageal cancer is neoadjuvant chemoradiotherapy (NCRT) plus radical resection. However, the technical aspects for implementing this comprehensive treatment strategy differ, especially in the controversial definition of the radiotherapy target area in NCRT. This study aimed to analyze the feasibility of involving field irradiation (IFI) in NCRT for locally advanced esophageal cancer. Methods: Retrospective analysis of locally advanced esophageal squamous cell carcinoma patients receiving NCRT in Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine from July 2016 to May 2017 showed that the radiotherapy target of all patients was our recommended IFI. The radiotherapy plan was redesigned for the enrolled patients according to the two traditional target delineation of elective node irradiation (ENI) and primary subclinical lesion irradiation (SLI). The dosimetric parameters of the three groups and the dose differences of organ at risk (OAR), such as lungs, heart and spinal cord, were compared, and the relationship between IFI Recurrence pattern and radiation target volumes was analyzed. Results: A total of 26 patients were enrolled. The average target volume of IFI was (277±77) cm3, which was significantly lower compared with ENI and SLI (P<0.05). IFI could significantly reduce relative volume fraction of lungs irradiated more than 5 and 20 Gy (V5 and V20), lungs average dose (Dmean), heart V30, heart Dmean and spinal cord maximum dose (Dmax) (P<0.05), compared with ENI. Lungs V20, lungs Dmean, heart Dmean and spinal cord Dmax decreased by 27.1%, 22.5%, 27.4% and 6.4% compared with ENI, and 24.1%, 22.0%, 24.8% and 5.7% compared with SLI, respectively. After 28 to 69 months of follow-up, 13 patients had recurrence and metastasis, of whom 7 patients had distant metastasis, 4 patients had recurrence in the irradiation field, and 1 patient had local recurrence in the irradiation field. The 3-year overall survival (OS) rate and disease-free survival (DFS) rate were 50.0% and 42.3%, respectively. Conclusion: IFI recommended by our institution is feasible to ensure clinical efficacy while significantly reducing the radiation dose of lungs, heart and spinal cord
Gut microbiota and cardiac arrhythmia
One of the most prevalent cardiac diseases is cardiac arrhythmia, however the underlying causes are not entirely understood. There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss about how GM and its metabolites might impact cardiac arrhythmia through a variety of mechanisms. We proposed to explore the relationship between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGln), bile acids(BA), and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation and other disease associated with cardiac arrythmia, detailing the processes involving immune regulation, inflammation, and different types of programmed cell death etc., which presents a key aspect of the microbial-host cross-talk. In addition, how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people are also summarized. Then we introduced potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator etc. In conclusion, the GM has a significant impact on cardiac arrhythmia through a variety of mechanisms, offering a wide range of possible treatment options. The discovery of therapeutic interventions that reduce the risk of cardiac arrhythmia by altering GM and metabolites is a real challenge that lies ahead
- …