18 research outputs found

    Grand Canonical Adaptive Resolution Simulation for Molecules with Electrons: A Theoretical Framework based on Physical Consistency

    Full text link
    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. T he Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.Comment: Computer Physics Communications (2017), in pres

    Androgen deprivation therapy plus abiraterone or docetaxel as neoadjuvant therapy for very-high-risk prostate cancer: a pooled analysis of two phase II trials

    Get PDF
    Objective: The study aimed to compare the efficacy and safety of androgen deprivation therapy (ADT) with abiraterone or docetaxel versus ADT alone as neoadjuvant therapy in patients with very-high-risk localized prostate cancer.Methods: This was a pooled analysis of two single-center, randomized, controlled, phase II clinical trials (ClinicalTrials.gov: NCT04356430 and NCT04869371) conducted from December 2018 to March 2021. Eligible participants were randomly assigned to the intervention (ADT plus abiraterone or docetaxel) and control (ADT alone) groups at a 2:1 ratio. Efficacy was evaluated by pathological complete response (pCR), minimal residual disease (MRD), and 3-year biochemical progression-free survival (bPFS). Safety was also analyzed.Results: The study included 42 participants in the ADT group, 47 in the ADT plus docetaxel group, and 48 in the ADT plus abiraterone group. A total of 132 (96.4%) participants had very-high-risk prostate cancer, and 108 (78.8%) had locally advanced disease. The ADT plus docetaxel group (28%) and ADT plus abiraterone group (31%) had higher rates of pCR or MRD (p = 0.001 and p < 0.001) compared with the ADT group (2%). The 3-year bPFS was 41.9% (95% CI: 26.6–57.2), 51.1% (95% CI: 36.8–65.4), and 61.2% (95% CI: 45.5–76.9), respectively. Significant difference was found among groups in terms of bPFS (p = 0.037).Conclusion: Compared with ADT alone, neoadjuvant therapy with ADT plus docetaxel or abiraterone could achieve better pathological outcomes (pCR or MRD) for very-high-risk localized prostate cancer. The ADT plus abiraterone group showed longer bPFS than ADT alone. The combination regimens were tolerable

    The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury

    No full text
    This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI

    Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury

    Get PDF
    This study was designed to explore the effect of basic fibroblast growth factor (bFGF) on radiation-induced endothelial dysfunction and histological changes in the urinary bladder. bFGF was administrated to human umbilical vein cells (HUVEC) or urinary bladder immediately after radiation. Reduced expression of thrombomodulin (TM) was indicated in the HUVEC and urinary bladder after treatment with radiation. Decreased apoptosis was observed in HUVEC treated with bFGF. Administration of bFGF increased the expression of TM in HUVEC medium, as well as in the urinary bladder at the early and delayed phases of radiation-induced bladder injury (RIBI). At the early phase, injection of bFGF increased the thickness of urothelium and reduced inflammation within the urinary bladder. At the delayed phase, bFGF was effective in reducing fibrosis within the urinary bladder. Our results indicate that endothelial dysfunction is a prominent feature of RIBI. Administration of bFGF can ameliorate radiation-induced endothelial dysfunction in urinary bladder and preserve bladder histology at early and delayed phases of RIBI

    Associations of Chinese visceral adiposity index and new-onset stroke in middle-aged and older Chinese adults: an observational study

    No full text
    Abstract Background Stroke represents the second most prevalent contributor to global mortality. The Chinese Visceral Adiposity Index (CVAI) serves as an established metric for assessing visceral adiposity in the Chinese population, exhibiting prognostic capabilities. This investigation aimed to explore the association of CVAI and new-onset stroke among middle-aged and older Chinese populations. Methods The study employed data from the 2011 and 2018 China Health and Retirement Longitudinal Study (CHARLS) to assess the association of CVAI and the incidence of new-onset stroke. Utilizing a directed acyclic graph (DAG), 10 potential confounders were identified. Moreover, to explore the association between CVAI and new-onset stroke, three multifactor logistic regression models were constructed, accounting for the identified confounders and mitigating their influence on the findings. Results The study comprised 7070 participants, among whom 417 (5.9%) experienced new-onset strokes. After controlling for confounding variables, regression analysis suggested that the new-onset stroke’s highest risk was linked to the fourth quartile (Q4) of the CVAI, with an odds ratio (OR) of 2.33 and a 95% confidence interval (CI) of 1.67–3.28. The decision tree analysis demonstrated a heightened probability of new-onset stroke among hypertensive individuals with a CVAI equal to or greater than 83, coupled with a C-reactive protein level no less than 1.1 mg/l. Age seemed to have a moderating influence on the CVAI and new-onset stroke association, exhibiting a more prominent interaction effect in participants under 60 years. Conclusions In middle-aged and older Chinese populations, a linear relationship was discerned between CVAI and the probability of new-onset stroke. CVAI provides a predictive framework for stroke incidence in this demographic, laying the groundwork for more sophisticated risk prediction models that improve the precision and specificity of stroke risk evaluations

    WDR4 promotes the progression and lymphatic metastasis of bladder cancer via transcriptional down-regulation of ARRB2

    No full text
    Abstract Lymph node (LN) metastasis is one of the key prognostic factors in bladder cancer, but its underlying mechanisms remain unclear. Here, we found that elevated expression of WD repeat domain 4 (WDR4) in bladder cancer correlated with worse prognosis. WDR4 can promote the LN metastasis and proliferation of bladder cancer cells. Mechanistic studies showed that WDR4 can promote the nuclear localization of DEAD-box helicase 20 (DDX20) and act as an adaptor to bind DDX20 and Early growth response 1 (Egr1), thereby inhibiting Egr1-promoted transcriptional expression of arrestin beta 2 (ARRB2) and ultimately contributing to the progression of bladder cancer. Immunohistochemical analysis confirmed that WDR4 expression is also an independent predictor of LN metastasis in bladder cancer. Our results reveal a novel mechanism of LN metastasis and progression in bladder cancer and identify WDR4 as a potential therapeutic target for metastatic bladder cancer

    Comparison of 68Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer

    No full text
    Abstract Background To evaluate the diagnostic value of 68Ga-PSMA-11 PET-CT with multiparametric magnetic resonance imaging (mpMRI) for lymph node (LN) staging in patients with intermediate- to high-risk prostate cancer (PCa) undergoing radical prostatectomy (RP) with pelvic lymph node dissection (PLND). Methods We retrospectively identified 42 consecutive patients with intermediate- to high-risk PCa according to D′Amico and without concomitant cancer. Preoperative 68Ga-PSMA-11 PET-CT, pelvic mpMRI and subsequent robot assisted laparoscopic RP with PLND were performed in all patients. Results Among 42 patients assessed, the preoperative PSA value, Gleason score, pT stage and intraprostatic PCa volume of patients with LN metastases were all significantly higher than those without metastases (P = 0.029, 0.028, 0.004, respectively). The average maximum standardized uptake value (SUV) of 68Ga-PSMA-11 PET-CT positive PCa of patients with or without LN metastases were 13.10 (range 6.12–51.75) and 7.22 (range 5.4–11.2), respectively (P < 0.001). 68Ga-PSMA-11 PET-CT and pelvic mpMRI had the ability of succeed on preoperative definite accurate diagnosis and accurate localization of primary PCa in all 42 patients. Fifteen patients (35.71%) had a pN1 stage. 51 positive LN were found. Both 68Ga-PSMA-11 PET-CT and pelvic mpMRI displayed brillient patient-based and region-based sensitivity, specificity, negative predictive value and positive predictive value. There was no statistical difference for the detection of LNMs according to the diameter of the LNMs between 68Ga-PSMA-11 PET-CT and mpMRI in this study. Conclusions Both 68Ga-PSMA-11 PET-CT and mpMRI performed great value for LN staging in patients with intermediate- to high-risk PCa undergoing RP with PLND. However, despite excellent performance of 68Ga-PSMA-11 PET-CT, it cannot replace mpMRI that remains excellent for lymph node staging

    Tumor-intrinsic RGS1 potentiates checkpoint blockade response via ATF3-IFNGR1 axis

    No full text
    ABSTRACTBackground Non-responsiveness is a major barrier in current cancer immune checkpoint blockade therapies, and the mechanism has not been elucidated yet. Therefore, it is necessary to discover the mechanism and biomarkers of tumor immunotherapeutic resistance.Methods Bioinformatics analysis was performed based on CD8+ T cell infiltration in multiple tumor databases to screen out genes related to anti-tumor immunity. Associations between Regulator of G-protein signaling 1 (RGS1) and IFNγ-STAT1 signaling, and MHCI antigen presentation pathway were examined by RT-qPCR, western blotting, and flow cytometry. The modulatory mechanisms of RGS1 were investigated via CHIP-qPCR and dual-luciferase assay. The clinical and therapeutic implications of RGS1 were comprehensively investigated using tumor cell lines, mouse models, and clinical samples receiving immunotherapy.Results RGS1 was identified as the highest gene positively correlated with immunogenicity among RGS family. Inhibition of RGS1 in neoplastic cells dampened anti-tumor immune response and elicited resistance to immunotherapy in both renal and lung murine subcutaneous tumors. Mechanistically, RGS1 enhanced the binding of activating transcription factor 3 (ATF3) to the promoter of interferon gamma receptor 1 (IFNGR1), activated STAT1 and the subsequent expression of IFNγ-inducible genes, especially CXCL9 and MHC class I (MHCI), thereby influenced CD8+ T cell infiltration and antigen presentation and processing. Clinically, lower expression level of RGS1 was associated with resistance of PD1 inhibition therapy and shortened progression-free survival among 21 NSCLC patients receiving immunotherapy.Conclusions Together, these findings uncover a novel mechanism that elicits immunotherapy resistance and highlight the function of tumor-intrinsic RGS1, which brings new insights for future strategies to sensitize anti-PD1 immunotherapy
    corecore