190 research outputs found

    Characterizations of F-superconductors and selected F-compounds, amorphous carbon and (VO)2P2O7 by 19F, 13C, 1H, 31P NMR and a new probe for multiple pulse, MAS and DAS NMR

    Get PDF
    [superscript]19F nuclear magnetic resonance (NMR) studies were performed on the polycrystalline inorganic conductor Ag[subscript]2F and the polycrystalline insulators AgF, YOF, EuOF, YF[subscript]3, CuF[subscript]2, BaF[subscript]2 and KF. The Ag[subscript]2F spectrum showed a [superscript]19F pea clearly shifted downfield with respect to AgF. The two types of nonequivalent F\u27s in YF[subscript]3 have the same isotropic chemical shift. Comparing the signals from the insulators and Ag[subscript]2F with the signals found in so-called 1-2-3 type superconductors of the formula RBa[subscript]2Cu[subscript]3O[subscript] 7-xF[subscript] x (R = Y and Eu) type, no detectable evidence for a Knight shifted built-in fluorine signal was found in the 1-2-3 type superconductors. The only signal found was from the BaF[subscript]2 which is an impurity in the superconductors;Amorphous carbon has been studied by [superscript]13C and [superscript]1H NMR with techniques of static single excitation, magic angle spinning and cross-polarization/magic angle spinning (CP/MAS). A spin-lattice relaxation time 0.7s was obtained by the progressive saturation method. Two different components are clearly seen in the spectrum of the static sample. The downfield component corresponds to sp[superscript]2-like carbons which comprise 93.6% of the total signal, and has an axially symmetric shift tensor with [sigma][subscript] ǁ = -28 ppm, [sigma][subscript]⊥ = 209 ppm and [macron][sigma] = 130 ppm. The upfield component corresponds to sp[superscript]3-like carbons which comprise 6.4% of the total signal and has a symmetric shift tensor with [macron][sigma] = 62 ppm. Two thirds of carbons are not seen in the static measurement because of high concentration of unpaired electrons leading to severe inhomogeneous line broadening. Those carbons are detected by magic angle spinning method in which sidebands spread over a range of 2000 ppm with the first moment located at 130 (±5) ppm. The upper limit of the fraction of hydrogenated carbons is 1.5%;The temperature dependence of the chemical shift of [superscript]31P in (VO)[subscript]2P[subscript]2O[subscript]7 has been studied. A Curie-Law-type temperature dependence of the isotropic chemical shift was observed. This makes (VO)[subscript]2P[subscript]2O[subscript]7 a viable internal temperature standard in high temperature NMR;A stable rotor-stator system is designed that is suitable for NMR experiments of homonuclear decoupling, magic angle spinning, and dynamic angle spinning experiments. A maximum speed of 16 KHz is achieved. The angle of rotation can be changed by 45° in 9 ms with no loss in rotation stability when spinning at 10 KHz

    Distributivity of ordinal sum implications over overlap and grouping functions

    Get PDF
    summary:In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed by Su et al. They then discussed the distributivity of such ordinal sum implications with respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such ordinal sum implications over two newly-born classes of aggregation operators, namely overlap and grouping functions, respectively. The main results of this paper are characterizations of the overlap and/or grouping function solutions to the four usual distributive equations of ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum implications distributing over overlap and grouping functions are given

    The role of electrochemical properties of biochar to promote methane production in anaerobic digestion

    Get PDF
    The electrochemical properties of biochar may be the key factor to promote anaerobic digestion, which has attracted extensive attention. However, the mechanism and the role of the electrochemical properties of biochar are remaining unclear. In this study, biochar with different electrochemical properties was prepared by pyrolysis at different temperatures (BC300/600/900) and oxidation or reduction modification (O/RBC300/600/900). The biochar was added as an additive to promote methanogenic performance of anaerobic digesters of glucose and food waste. In both anaerobic digestion systems, the cumulative methane production of food waste increased by 42.07% and the maximum methane production rate of glucose enhanced by 17.80% after BC900 treatment. RBC600 was inferior to BC900, but superior to BC600. Microbiological analysis suggests that biochar enriched the relative abundant Synergistia and Methanoculleus. This is conducive to the establishment of the direct interspecies electrons transfer (DIET). Results from correlation analysis, principal component analysis and machine learning confirmed that both of the electron donating capacities (EDC) and electrical conductivity (EC) are dominated factors affecting the cumulative methane yield. Through the analysis of electrochemical properties and preparation process of biochar, the results showed that the pyrolysis temperature increases and the content of phenolic hydroxyl decreases under medium temperature of biochar, which was beneficial to the methane production. This study found the key factors of the electrochemical properties of biochar in anaerobic digestion, provided new insights for the mechanism of biochar promoting anaerobic digestion and proposed novel directions for the preparation of biochar.acceptedVersio

    Accurate Cutting-point Estimation for Robotic Lychee Harvesting through Geometry-aware Learning

    Full text link
    Accurately identifying lychee-picking points in unstructured orchard environments and obtaining their coordinate locations is critical to the success of lychee-picking robots. However, traditional two-dimensional (2D) image-based object detection methods often struggle due to the complex geometric structures of branches, leaves and fruits, leading to incorrect determination of lychee picking points. In this study, we propose a Fcaf3d-lychee network model specifically designed for the accurate localisation of lychee picking points. Point cloud data of lychee picking points in natural environments are acquired using Microsoft's Azure Kinect DK time-of-flight (TOF) camera through multi-view stitching. We augment the Fully Convolutional Anchor-Free 3D Object Detection (Fcaf3d) model with a squeeze-and-excitation(SE) module, which exploits human visual attention mechanisms for improved feature extraction of lychee picking points. The trained network model is evaluated on a test set of lychee-picking locations and achieves an impressive F1 score of 88.57%, significantly outperforming existing models. Subsequent three-dimensional (3D) position detection of picking points in real lychee orchard environments yields high accuracy, even under varying degrees of occlusion. Localisation errors of lychee picking points are within 1.5 cm in all directions, demonstrating the robustness and generality of the model

    Selection of Reference Genes for RT-qPCR Analysis in \u3cem\u3eCoccinella septempunctata\u3c/em\u3e\u3c to Assess Un-intended Effects of RNAi Transgenic Plants

    Get PDF
    The development of genetically engineered plants that employ RNA interference (RNAi) to suppress invertebrate pests opens up new avenues for insect control. While this biotechnology shows tremendous promise, the potential for both non-target and off-target impacts, which likely manifest via altered mRNA expression in the exposed organisms, remains a major concern. One powerful tool for the analysis of these un-intended effects is reverse transcriptase-quantitative polymerase chain reaction, a technique for quantifying gene expression using a suite of reference genes for normalization. The seven-spotted ladybeetle Coccinella septempunctata, a commonly used predator in both classical and augmentative biological controls, is a model surrogate species used in the environmental risk assessment (ERA) of plant incorporated protectants (PIPs). Here, we assessed the suitability of eight reference gene candidates for the normalization and analysis of C. septempunctata v-ATPase A gene expression under both biotic and abiotic conditions. Five computational tools with distinct algorisms, geNorm, Normfinder, BestKeeper, the ΔCtmethod, and RefFinder, were used to evaluate the stability of these candidates. As a result, unique sets of reference genes were recommended, respectively, for experiments involving different developmental stages, tissues, and ingested dsRNAs. By providing a foundation for standardized RT-qPCR analysis in C. septempunctata, our work improves the accuracy and replicability of the ERA of PIPs involving RNAi transgenic plants

    Selection of Reference Genes for RT-qPCR Analysis in Coccinella septempunctata to Assess Un-intended Effects of RNAi Transgenic Plants

    Get PDF
    The development of genetically engineered plants that employ RNA interference (RNAi) to suppress invertebrate pests opens up new avenues for insect control. While this biotechnology shows tremendous promise, the potential for both non-target and off-target impacts, which likely manifest via altered mRNA expression in the exposed organisms, remains a major concern. One powerful tool for the analysis of these un-intended effects is reverse transcriptase-quantitative polymerase chain reaction, a technique for quantifying gene expression using a suite of reference genes for normalization. The seven-spotted ladybeetle Coccinella septempunctata, a commonly used predator in both classical and augmentative biological controls, is a model surrogate species used in the environmental risk assessment (ERA) of plant incorporated protectants (PIPs). Here, we assessed the suitability of eight reference gene candidates for the normalization and analysis of C. septempunctata v-ATPase A gene expression under both biotic and abiotic conditions. Five computational tools with distinct algorisms, geNorm, Normfinder, BestKeeper, the ΔCt method, and RefFinder, were used to evaluate the stability of these candidates. As a result, unique sets of reference genes were recommended, respectively, for experiments involving different developmental stages, tissues, and ingested dsRNAs. By providing a foundation for standardized RT-qPCR analysis in C. septempunctata, our work improves the accuracy and replicability of the ERA of PIPs involving RNAi transgenic plants

    Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice

    Get PDF
    Introduction Effective therapies for obesity and diabetes are still lacking. The aim of this study was to evaluate whether a single intravenous infusion of syngeneic adipose-derived mesenchymal stem cells (ASCs) can reduce obesity, lower insulin resistance, and improve glucose homeostasis in a high-fat diet-induced obese (DIO) mouse model. Methods Seven-week-old C57BL/6 mice were fed a high-fat diet for 20 weeks to generate the DIO mouse model. Mice were given a single intravenous infusion of ex vivo expanded syngeneic ASCs at 2 × 10 6 cells per mouse. DIO or CHOW mice injected with saline were used as controls. Body weights, blood glucose levels, glucose, and insulin tolerance test results were obtained before and 2 and 6 weeks after cell infusion. Triglyceride (TG), high-density lipoprotein (HDL), and insulin levels in serum were measured. Expressions of genes related to insulin resistance, including peroxisome proliferator-activated receptor γ (PPARγ) and insulin receptor (InsR), and inflammation (IL-6, F4/80, and nucleotide-binding oligomerization domain containing 2, or NOD2), were measured in livers at mRNA level by real-time-polymerase chain reaction analysis. Beta-cell mass in pancrheases from CHOW, DIO, and DIO + ASC mice was quantified. GFP + ASCs were injected, and the presence of GFP + cells in livers and pancreases was determined. Results DIO mice that had received ASCs showed reduced body weights, reduced blood glucose levels, and increased glucose tolerance. ASC treatment was found to reduce TG levels and increase serum HDL levels. In livers, less fat cell deposition was observed, as were increased expression of InsR and PPARγ and reduction in expressions of IL-6 and F4/80. Treated mice showed well-preserved pancreatic β-cell mass with reduced expression of F4/80 and TNF-α compared with DIO controls. GFP + cells were found in liver and pancreas tissues at 1 and 2 weeks after cell injection. Conclusions ASC therapy is effective in lowering blood glucose levels and increasing glucose tolerance in DIO mice. The protective effects of ASCs arise at least in part from suppression of inflammation in the liver. In addition, ASCs are associated with better-preserved pancreatic β-cell mass

    Well-Tempered Metadynamics Simulations Predict the Structural and Dynamic Properties of a Chiral 24-Atom Macrocycle in Solution

    Get PDF
    Inspired by therapeutic potential, the molecular engineering of macrocycles is garnering increased interest. Exercising control with design, however, is challenging due to the dynamic behavior that these molecules must demonstrate in order to be bioactive. Herein, the value of metadynamics simulations is demonstrated: the free-energy surfaces calculated reveal folded and flattened accessible conformations of a 24-atom macrocycle separated by barriers of c.a. 6 kT under experimentally relevant conditions. Simulations reveal that the dominant conformer is folded-an observation consistent with a solid-state structure determined by X-ray crystallography and a network of rOes established by 1H NMR. Simulations suggest that the macrocycle exists as a rapidly interconverting pair of enantiomeric, folded structures. Experimentally, 1H NMR shows a single species at room temperature. However, at lower temperature, the interconversion rate between these enantiomers becomes markedly slower, resulting in the decoalescence of enantiotopic methylene protons into diastereotopic, distinguishable resonances due to the persistence of conformational chirality. The emergence of conformational chirality provides critical experimental support for the simulations, revealing the dynamic nature of the scaffold-a trait deemed critical for oral bioactivity
    corecore