204 research outputs found

    Phosphine-Catalyzed Annulations of Azomethine Imines: Allene-Dependent [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] Pathways

    Get PDF
    In this paper we describe the phosphine-catalyzed [3 + 2], [3 + 3], [4 + 3], and [3 + 2 + 3] annulations of azomethine imines and allenoates. These processes mark the first use of azomethine imines in nucleophilic phosphine catalysis, producing dinitrogen-fused heterocycles, including tetrahydropyrazolo-pyrazolones, -pyridazinones, -diazepinones, and -diazocinones. Counting the two different reaction modes in the [3 + 3] cyclizations, there are five distinct reaction pathways—the choice of which depends on the structure and chemical properties of the allenoate. All reactions are operationally simple and proceed smoothly under mild reaction conditions, affording a broad range of 1,2-dinitrogen-containing heterocycles in moderate to excellent yields. A zwitterionic intermediate formed from a phosphine and two molecules of ethyl 2,3-butadienoate acted as a 1,5-dipole in the annulations of azomethine imines, leading to the [3 + 2 + 3] tetrahydropyrazolo-diazocinone products. The incorporation of two molecules of an allenoate into an eight-membered-ring product represents a new application of this versatile class of molecules in nucleophilic phosphine catalysis. The salient features of this protocol—the facile access to a diverse range of nitrogen-containing heterocycles and the simple preparation of azomethine imine substrates—suggest that it might find extensive applications in heterocycle synthesis

    Type-II Ising Pairing in Few-Layer Stanene

    Get PDF
    Spin-orbit coupling has proven indispensable in realizing topological materials and more recently Ising pairing in two-dimensional superconductors. This pairing mechanism relies on inversion symmetry breaking and sustains anomalously large in-plane polarizing magnetic fields whose upper limit is expected to diverge at low temperatures, although experimental demonstration of this has remained elusive due to the required fields. In this work, the recently discovered superconductor few-layer stanene, i.e. epitaxially strained α\alpha-Sn, is shown to exhibit a new type of Ising pairing between carriers residing in bands with different orbital indices near the Γ\Gamma-point. The bands are split as a result of spin-orbit locking without the participation of inversion symmetry breaking. The in-plane upper critical field is strongly enhanced at ultra-low temperature and reveals the sought for upturn
    • …
    corecore