105 research outputs found

    Noninvasive vaccination against infectious diseases

    Get PDF
    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future. © 2018, © 2018 The Author(s). Published with license by Taylor and Francis. © 2018, © Zhichao Zheng, Diana Diaz-Arévalo, Hongbing Guan, and Mingtao Zeng

    Chitosan Modulates Inflammatory Responses in Rats Infected with Enterotoxigenic Escherichia coli

    Get PDF
    This study aims to investigate the effects of dietary chitosan (COS) on gastrointestinal pathogen resistance in mice model. For two weeks, a control group of ICR mice received a basal diet whilst the intervention group received the basal diet supplemented with 300 mg/kg COS. After two weeks, the mice fed the supplemented diet had a lower body weight. Then enterotoxigenic Escherichia coli (E. coli) was administered to the mice through oral gavage, with each mouse receiving 108 CFU. At day 7 after infection, the bacterial load in the jejunum and faeces was significantly lower in the COS group than that in the control group. Moreover, the mRNA and protein levels of IL-1β, IL-6, IL-17, IL-18, and TNF-α were significantly lower in the group of mice receiving the COS diet; also the jejunal production of toll-like receptor-4 (TLR-4) was suppressed in the COS group. These results indicate the intervention influenced inflammation and controlled E. coli infection

    Biological Effects and Applications of Chitosan and Chito-Oligosaccharides

    Get PDF
    The numerous functional properties and biological effects of chitosan and chito-oligosaccharides (COS) have led to a significant level of interest, particularly with regard to their potential use in the agricultural, environmental, nutritional, and pharmaceutical fields. This review covers recent studies on the biological functions of COS and the impacts of dietary chitosan and COS on metabolism. The majority of results suggest that the use of chitosan as a feed additive has favorable biological effects, such as antimicrobial, anti-oxidative, cholesterol reducing, and immunomodulatory effects. The biological impacts reviewed herein may provide a new appreciation for the future use of COS

    Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma

    Get PDF
    Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS

    Absence of Both IL-7 and IL-15 Severely Impairs the Development of CD8+ T Cell Response against Toxoplasma gondii

    Get PDF
    CD8+ T cells play an essential role in the protection against both acute as well as chronic Toxoplasma gondii infection. Although the role of IL-15 has been reported to be important for the development of long-term CD8+ T cell immunity against the pathogen, the simultaneous roles played by both IL-15 and related γ-chain family cytokine IL-7 in the generation of this response during acute phase of infection has not been described. We demonstrate that while lack of IL-7 or IL-15 alone has minimal impact on splenic CD8+ T cell maturation or effector function development during acute Toxoplasmosis, absence of both IL-7 and IL-15 only in the context of infection severely down-regulates the development of a potent CD8+ T cell response. This impairment is characterized by reduction in CD44 expression, IFN-γ production, proliferation and cytotoxicity. However, attenuated maturation and decreased effector functions in these mice are essentially downstream consequences of reduced number of antigen-specific CD8+ T cells. Interestingly, the absence of both cytokines did not impair initial CD8+ T cell generation but affected their survival and differentiation into memory phenotype IL-7Rαhi cells. Significantly lack of both cytokines severely affected expression of Bcl-2, an anti-apoptotic protein, but minimally affected proliferation. The overarching role played by these cytokines in eliciting a potent CD8+ T cell immunity against T. gondii infection is further evidenced by poor survival and high parasite burden in anti IL-7 treated IL-15−/− mice. These studies demonstrate that the two cytokines, IL-7 and IL-15, are exclusively important for the development of protective CD8+ T cell immune response against T. gondii. To the best of our knowledge this synergism between IL-7 and IL-15 in generating an optimal CD8+ T cell immunity against intracellular parasite or any other infectious disease model has not been previously reported

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Genome-Wide Association Study of Lung Adenocarcinoma in East Asia and Comparison With a European Population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction  = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
    corecore