4,442 research outputs found
Systematic elucidation of independently modulated genes in Lactiplantibacillus plantarum reveals a trade-off between secondary and primary metabolism
Lactiplantibacillus plantarum is a probiotic bacterium widely used in food and health industries, but its gene regulatory information is limited in existing databases, which impedes the research of its physiology and its applications. To obtain a better understanding of the transcriptional regulatory network of L. plantarum, independent component analysis of its transcriptomes was used to derive 45 sets of independently modulated genes (iModulons). Those iModulons were annotated for associated transcription factors and functional pathways, and active iModulons in response to different growth conditions were identified and characterized in detail. Eventually, the analysis of iModulon activities reveals a trade-off between regulatory activities of secondary and primary metabolism in L. plantarum
Bis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2 N 3,O]bis(thiocyanato-κN)cobalt(II) methanol solvate
In the mononuclear title complex, [Co(NCS)2(C9H10N2O)2]·CH3OH, the cobalt(II) ion is surrounded by two (1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thiocyanate ligands, and exhibits a distorted octahedral coordination by four N atoms and two O atoms. The structure is consolidated by hydrogen bonds between the organic ligand, thiocyanate anion and the uncoordinated methanol molecule, leading to a chain along [100]
Diazidobis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2 N 3,O]manganese(II)
The title complex, [Mn(N3)2(C9H10N2O)2], possesses crystallographically imposed twofold symmetry. The MnII atom is coordinated by four N atoms and two O atoms in a distorted octahedral geometry. The crystal packing is stabilized by strong intermolecular O—H⋯N hydrogen bonds
2,5-Dibromoterephthalic acid dihydrate
The asymmetric unit of the title compound, C8H4Br2O4·2H2O, contains one half-molecule of 2,5-dibromoterephthalic acid (DBTA) and one water molecule. The DBTA molecule is centrosymmetric. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link the molecules, forming a three-dimensional framework
Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating
InGaAs/InP single-photon avalanche diodes (SPADs) working in the regime of
GHz clock rates are crucial components for the high-speed quantum key
distribution (QKD). We have developed for the first time a compact, stable and
user-friendly tabletop InGaAs/InP single-photon detector system operating at a
1.25 GHz gate rate that fully integrates functions for controlling and
optimizing SPAD performance. We characterize the key parameters of the detector
system and test the long-term stability of the system for continuous operation
of 75 hours. The detector system can substantially enhance QKD performance and
our present work paves the way for practical high-speed QKD applications.Comment: 11 pages, 6 figures. Accepted for publication in Review of Scientific
Instrument
- …