25,725 research outputs found
A connection-level call admission control using genetic algorithm for MultiClass multimedia services in wireless networks
Call admission control in a wireless cell in a personal communication system (PCS) can be modeled as an M/M/C/C queuing system with m classes of users. Semi-Markov Decision Process (SMDP) can be used to optimize channel utilization with upper bounds on handoff blocking probabilities as Quality of Service constraints. However, this method is too time-consuming and therefore it fails when state space and action space are large. In this paper, we apply a genetic algorithm approach to address the situation when the SMDP approach fails. We code call admission control decisions as binary strings, where a value of “1” in the position i (i=1,…m) of a decision string stands for the decision of accepting a call in class-i; a value of “0” in the position i of the decision string stands for the decision of rejecting a call in class-i. The coded binary strings are feed into the genetic algorithm, and the resulting binary strings are founded to be near optimal call admission control decisions. Simulation results from the genetic algorithm are compared with the optimal solutions obtained from linear programming for the SMDP approach. The results reveal that the genetic algorithm approximates the optimal approach very well with less complexity
Operator for Describing Polarization States of a Photon
Based on the quantized electromagnetic field described by the
Riemann-Silberstein complex vector , we construct the eigenvector set of , which makes up an orthonormal and complete representation. In terms of we then introduce a new operator which can describe the relative ratio of the
left-handed and right-handed polarization states of a polarized photon .In
eigenvector basis the operator manifestly exhibits a behaviour
which is similar to a phase difference between two orientations of polarization
of a light beam in classical optics.Comment: This version (5 pages) will be published in the European Physical
Journal
Phases and phase stabilities of Fe3X alloys (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying
Mechanical alloying with a Spex 8000 mixer/mill was used to prepare several alloys of the Fe3X composition, where the solutes X were from groups IIB, IIIB, IVB, and VB of the periodic table. Using x-ray diffractometry and Mössbauer spectrometry, we determined the steady-state phases after milling for long times. The tendencies of the alloys to form the bcc phase after milling are predicted well with the modified usage of a Darken–Gurry plot of electronegativity versus metallic radius. Thermal stabilities of some of these phases were studied. In the cases of Fe3Ge and Fe3Sn, there was the formation of transient D03 and B2 order during annealing, although this ordered structure was replaced by equilibrium phases upon further annealing
- …