142 research outputs found

    Concrete delamination depth estimation using a noncontact mems ultrasonic sensor array and an optimization approach

    Get PDF
    In this study, we present a method to estimate the depth of near-surface shallow delamination in concrete using a noncontact micro-electromechanical system (MEMS) ultrasonic sensor array and an optimization-based data processing approach. The proposed approach updates the bulk wave velocities of the tested concrete element by solving an optimization problem using reference ultrasonic scanning data collected from a full-depth concrete region. Subsequently, the depth of concrete delamination is estimated by solving a separate optimization problem. Numerical simulations and laboratory experiments were conducted to evaluate the performance of the proposed ultrasonic data processing approach. The results demonstrated that the depth of shallow delamination in concrete structures could be accurately estimated

    Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus.

    Get PDF
    The incidence of adverse effects and pathogen resistance encountered with small molecule antibiotics is increasing. As such, there is mounting focus on immunogene therapy to augment the immune system's response to infection and accelerate healing. A major obstacle to in vivo gene delivery is that the primary uptake pathway, cellular endocytosis, results in extracellular excretion and lysosomal degradation of genetic material. Here we show a nanosystem that bypasses endocytosis and achieves potent gene knockdown efficacy. Porous silicon nanoparticles containing an outer sheath of homing peptides and fusogenic liposome selectively target macrophages and directly introduce an oligonucleotide payload into the cytosol. Highly effective knockdown of the proinflammatory macrophage marker IRF5 enhances the clearance capability of macrophages and improves survival in a mouse model of Staphyloccocus aureus pneumonia

    Malignant Pleural Effusion from Metastatic Prostate Cancer: A Case Report with Unusual Cytologic Findings

    Get PDF
    We present a case of 55-year-old man who complained of dyspnea and sputum for a month. He was an ex-smoker with a history of prostate cancer and pulmonary tuberculosis. Chest radiographs revealed bilateral pleural effusions of a small to moderate amount. Pigtail catheters were inserted for drainage. The pleural fluid consisted of large clusters and tightly cohesive groups of malignant cells, which however could not be ascribed to prostate cancer with certainty. We performed immunocytochemical panel studies to determine the origin of cancer metastasis. The immunostaining results were positive for prostate-specific antigen, alpha-methylacyl-coenzyme A racemase, and Nkx 3.1, consistent with prostate cancer. Pleural effusion associated with prostate cancer is rare. To our knowledge, this is the first case report in Korea to describe cytologic features of malignant pleural effusion associated with prostate cancer

    A Herbal Medicine, Gongjindan

    Get PDF
    This study protocol aims to explore the effectiveness, safety, and cost-effectiveness of a herbal medication, Gongjindan (GJD), in patients with chronic dizziness. This will be a prospective, multicenter, randomized, double-blind, placebo-controlled, parallel-group, clinical trial. Seventy-eight patients diagnosed with Meniere’s disease, psychogenic dizziness, or dizziness of unknown cause will be randomized and allocated to either a GJD or a placebo group in a 1 : 1 ratio. Participants will be orally given 3.75 g GJD or placebo in pill form once a day for 56 days. The primary outcome measure will be the Dizziness Handicap Inventory score. Secondary outcome measures will be as follows: severity (mean vertigo scale and visual analogue scale) and frequency of dizziness, balance function (Berg Balance Scale), fatigue (Fatigue Severity Scale) and deficiency pattern/syndrome (qi blood yin yang-deficiency questionnaire) levels, and depression (Korean version of Beck’s Depression Inventory) and anxiety (State-Trait Anxiety Inventory) levels. To assess safety, adverse events, including laboratory test results, will be monitored. Further, the incremental cost-effectiveness ratio will be calculated based on quality-adjusted life years (from the EuroQoL five dimensions’ questionnaire) and medical expenses. Data will be statistically analyzed at a significance level of 0.05 (two-sided). This trial is registered with ClinicalTrials.gov NCT03219515, in July 2017

    Mentides a les xarxes : ens ho empassem tot, a internet?

    Get PDF
    The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels

    The Origin of a Distributed Stellar Population in the Star-forming Region W4

    Get PDF
    Stellar kinematics provides the key to understanding the formation process and dynamical evolution of stellar systems. Here, we present a kinematic study of the massive star-forming region (SFR) W4 in the Cassiopeia OB6 association using the Gaia Data Release 2 and high-resolution optical spectra. This SFR is composed of a core cluster (IC 1805) and a stellar population distributed over 20 pc, which is a typical structural feature found in many OB associations. According to a classical model, this structural feature can be understood in the context of the dynamical evolution of a star cluster. The core-extended structure exhibits internally different kinematic properties. Stars in the core have an almost isotropic motion, and they appear to reach virial equilibrium given their velocity dispersion (0.9 0.3 km s(-1)) comparable to that in a virial state (similar to 0.8 km s(-1)). On the other hand, the distributed population shows a clear pattern of radial expansion. From theN-body simulation for the dynamical evolution of a model cluster in subvirial state, we reproduce the observed structure and kinematics of stars. This model cluster experiences collapse for the first 2 Myr. Some members begin to radially escape from the cluster after the initial collapse, eventually forming a distributed population. The internal structure and kinematics of the model cluster appear similar to those of W4. Our results support the idea that the stellar population distributed over 20 pc in W4 originate from the dynamical evolution of IC 1805

    Under-Ice Light Field in the Western Arctic Ocean During Late Summer

    Get PDF
    The Arctic is no longer a region dominated by thick multi-year ice (MYI), but by thinner, more dynamic, first-year-ice (FYI). This shift towards a seasonal ice cover has consequences for the under-ice light field, as sea-ice and its snow cover are a major factor influencing radiative transfer and thus, biological activity within- and under the ice. This work describes in situ measurements of light transmission through different types of sea-ice (MYI and FYI) performed during two expeditions to the Chukchi sea in August 2018 and 2019, as well as a simple characterisation of the biological state of the ice microbial system. Our analysis shows that, in late summer, two different states of FYI exist in this region: 1) FYI in an enhanced state of decay, and 2) robust FYI, more likely to survive the melt season. The two FYI types have different average ice thicknesses: 0.74 ± 0.07 m (N = 9) and 0.93 ± 0.11 m (N = 9), different average values of transmittance: 0.15 ± 0.04 compared to 0.09 ± 0.02, and different ice extinction coefficients: 1.49 ± 0.28 and 1.12 ± 0.19 m−1. The measurements performed over MYI present different characteristics with a higher average ice thickness of 1.56 ± 0.12 m, lower transmittance (0.05 ± 0.01) with ice extinction coefficients of 1.24 ± 0.26 m−1 (N = 12). All ice types show consistently low salinity, chlorophyll a concentrations and nutrients, which may be linked to the timing of the measurements and the flushing of melt-water through the ice. With continued Arctic warming, the summer ice will continue to retreat, and the decayed variant of FYI, with a higher scattering of light, but a reduced thickness, leading to an overall higher light transmittance, may become a more relevant ice type. Our results suggest that in this scenario, more light would reach the ice interior and the upper-ocean

    Primary Polymorphous Low-Grade Adenocarcinoma of Lung Treated by Sleeve Bronchial Resection : A Case Report

    Get PDF
    We report a surgical case of primary polymorphous low-grade adenocarcinoma (PLGA) of the minor salivary gland-type of the lung. A PLGA originating from the right upper lobar bronchial inlet was successfully treated by sleeve right upper lobectomy. PLGAs are thought to be indolent tumors that are preferentially localized to the palate, and they affect the minor salivary glands almost exclusively. Until now, two cases of distant metastases to the lung have been reported in the English literature. To the best of our knowledge, only one case of PLGA of minor salivary gland-type of the lung without evidence of a previous oropharyngeal primary tumor has been reported in the English literature. But the case was not a single lesion; it was bilateral tumors accompanied by tumors of the cervical lymph nodes. We report here the first case of a single primary PLGA of the minor salivary gland-type of the lung, which was successfully treated by sleeve bronchial resection of right upper lobe

    NarSha: Pioneering The Korean Microsatellite Constellation for Spaceborne Methane Monitoring

    Get PDF
    Methane (CH4) is the second most abundant anthropogenic greenhouse gas contributing the global warming. Its global warming potential is estimated to be about 80 times greater than that of carbon dioxide (CO2) over the last 20 years. To achieve a global net zero in carbon emissions, it is important to monitor and manage point sources of methane emissions worldwide. We introduce the first Korean spaceborne methane monitoring platform development project, termed NarSha. Collaborating with Nara Space Technology, the Climate Laboratory of Seoul National University, and the Korea Astronomy and Space Science Institute, the NarSha project aims to develop and launch the standard microsatellite by 2026. The microsatellite system, named the Korean methane monitoring microsatellite (K3M), is designed to be compatible with the 16U CubeSat standard and is equipped with two optical payloads. The primary payload is a hyperspectral imager operating in the short-wave infrared (SWIR) range, with a spectral resolution finer than 1 nm within the weak methane absorption band (1625-1670 nm) and ground sampling distance (GSD) of 30 meter at an altitude of 500 km. The secondary payload, VIS/NIR camera, is integrated with the hyperspectral imager to identify clouds within its scene. Both payloads have a swath greater than 10 km at 500 km altitude, enabling a local-level monitoring. The agile and precise attitude control system can improve a SNR during the mission. Furthermore, the on-board processing capability and high-speed communication facilitate the delivery of large volumes of raw data essential for the detection and quantification of methane plumes. This proposed system will be operated as LEO constellation to obtain a global methane point source data with high spatial and temporal resolution. This data will significantly contribute to the tracking and quantifying of global methane emissions and establishing a strategy for global warming mitigation. In this study, we introduce the NarSha project and outlines the design of microsatellite systems and the constellation for spaceborne methane monitoring
    • …
    corecore