892 research outputs found

    Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties

    Get PDF
    We construct the explicit solution of the initial value problem for sequences generated by the general Somos-6 recurrence relation, in terms of the Kleinian sigma-function of genus two. For each sequence there is an associated genus two curve XX, such that iteration of the recurrence corresponds to translation by a fixed vector in the Jacobian of XX. The construction is based on a Lax pair with a spectral curve SS of genus four admitting an involution σ\sigma with two fixed points, and the Jacobian of XX arises as the Prym variety Prym (S,σ)(S,\sigma)

    Algebraic entropy for algebraic maps

    Get PDF
    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Backlund transformations

    A class of equations with peakon and pulson solutions (with an Appendix by Harry Braden and John Byatt-Smith)

    Get PDF
    We consider a family of integro-differential equations depending upon a parameter bb as well as a symmetric integral kernel g(x)g(x). When b=2b=2 and gg is the peakon kernel (i.e. g(x)=exp(x)g(x)=\exp(-|x|) up to rescaling) the dispersionless Camassa-Holm equation results, while the Degasperis-Procesi equation is obtained from the peakon kernel with b=3b=3. Although these two cases are integrable, generically the corresponding integro-PDE is non-integrable. However,for b=2b=2 the family restricts to the pulson family of Fringer & Holm, which is Hamiltonian and numerically displays elastic scattering of pulses. On the other hand, for arbitrary bb it is still possible to construct a nonlocal Hamiltonian structure provided that gg is the peakon kernel or one of its degenerations: we present a proof of this fact using an associated functional equation for the skew-symmetric antiderivative of gg. The nonlocal bracket reduces to a non-canonical Poisson bracket for the peakon dynamical system, for any value of b1b\neq 1.Comment: Contribution to volume of Journal of Nonlinear Mathematical Physics in honour of Francesco Caloger

    Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation

    Get PDF
    Recently Vladimir Novikov found a new integrable analogue of the Camassa-Holm equation, admitting peaked soliton (peakon) solutions, which has nonlinear terms that are cubic, rather than quadratic. In this paper, the explicit formulas for multipeakon solutions of Novikov's cubically nonlinear equation are calculated, using the matrix Lax pair found by Hone and Wang. By a transformation of Liouville type, the associated spectral problem is related to a cubic string equation, which is dual to the cubic string that was previously found in the work of Lundmark and Szmigielski on the multipeakons of the Degasperis-Procesi equation.Comment: 41 pages, LaTeX + AMS packages + pstrick
    corecore