11,787 research outputs found

    Additional Acceleration of Protons and Energetic Neutrino Production in a Filamentary Jet of the Blazar Markarian 501

    Full text link
    Blazars have been regarded as one of the most powerful sources of the highest energy cosmic rays and also their byproducts, neutrinos. Provided that a magnetized filamentary system is established in a blazar jet as well, we could apply the mechanism of multi-stage diffusive shock acceleration to a feasible TeV emitter, Mrk 501 to evaluate the achievable maximum energy of protons. Taking conceivable energy restriction into account systematically, it seems adequate to say that EeV-protons are produced at this site by our present model. We also estimate neutrino fluxes generated by these accelerated protons and discuss the detectability based on an updated kilometre-scale telescope such as IceCube.Comment: 17 pages, 3 Postscript figure

    Vortex servovalve for fluidic or electrical input

    Get PDF
    Proportional-pressure control servovalve consisting of fluid amplifier bellows-driven jet-pipe and two vortex valves operating in push-pull, with a pair of bellows for pressure feedback is tolerant to comtaminant particles and meets minimum standby flow requirements for applications such as rocket thruster nozzles

    An experimental investigation on the subcritical instability in plane Poieseuille flow

    Get PDF
    The relationship between the three dimensional properties of the fundamental flow of a plane Poieseuille flow and subcritical stability was studied. An S-T wave was introduced into the flow and the three dimensional development of the wave observed. Results indicate that: (1) the T-S wave has three dimensional properties which are synchronous with the fundamental flow, but there is damping at microamplitude; (2) when the amplitude reaches a certain threshold, subcritical instability and peak valley bifurcation occur simultaneously and a peak valley structure is formed; (3) this threshold depends to a great extent on the frequency; and (4) after the peak valley bifurcation there is a transition to a turbulent flow by the process of laminar flow collapse identical to that in Blasius flow

    Fluidic proportional thruster for SPARCS 4

    Get PDF
    Design, development, fabrication, and acceptance test results for two fluidic proportional thrusters for use in SPARCS

    Effects of mirror reflection versus diffusion anisotropy on particle acceleration in oblique shocks

    Full text link
    Cosmic ray particles are more rapidly accelerated in oblique shocks, with the magnetic field inclined with respect to the shock normal direction, than in parallel shocks, as a result of mirror reflection at the shock surface and slower diffusion in the shock normal direction. We investigate quantitatively how these effects contribute to reducing the acceleration time over the whole range of magnetic field inclinations. It is shown that, for quasi-perpendicular inclination, the mirror effect plays a remarkable role in reducing the acceleration time; whereas, at relatively small inclination, the anisotropic diffusion effect is dominant in reducing that time. These results are important for a detailed understanding of the mechanism of particle acceleration by an oblique shock in space and heliosphereic plasmas.Comment: 6 pages, 2 figure

    Behavior of Li abundances in solar-analog stars II. Evidence of the connection with rotation and stellar activity

    Full text link
    We previously attempted to ascertain why the Li I 6708 line-strengths of Sun-like stars differ so significantly despite the superficial similarities of stellar parameters. We carried out a comprehensive analysis of 118 solar analogs and reported that a close connection exists between the Li abundance A_Li and the line-broadening width (v_r+m; mainly contributed by rotational effect), which led us to conclude that stellar rotation may be the primary control of the surface Li content. To examine our claim in more detail, we study whether the degree of stellar activity exhibits a similar correlation with the Li abundance, which is expected because of the widely believed close connection between rotation and activity. We measured the residual flux at the line center of the strong Ca II 8542 line, r_0(8542), known to be a useful index of stellar activity, for all sample stars using newly acquired spectra in this near-IR region. The projected rotational velocity (v_e sin i) was estimated by subtracting the macroturbulence contribution from v_r+m that we had already established. A remarkable (positive) correlation was found in the A_Li versus (vs.) r_0(8542) diagram as well as in both the r_0(8542) vs. v_e sin i and A_Li vs. v_e sin i diagrams, as had been expected. With the confirmation of rotation-dependent stellar activity, this clearly shows that the surface Li abundances of these solar analogs progressively decrease as the rotation rate decreases. Given this observational evidence, we conclude that the depletion of surface Li in solar-type stars, probably caused by effective envelope mixing, operates more efficiently as stellar rotation decelerates. It may be promising to attribute the low-Li tendency of planet-host G dwarfs to their different nature in the stellar angular momentum.Comment: 12 pages, 9 figures; accepted for publication in Astron. Astrophys

    Transitive X-ray spectrum and PeV gamma-ray cutoff in the M87 jet: Electron "Pevatron"

    Get PDF
    We propose a modified version of the X-ray spectral index and an intrinsic cutoff frequency of inverse Compton radiation from the brightest knot of the M87 jet, in conjunction with an application of the new conceptions of injection and diffusive shock acceleration (DSA) of electrons in magnetized filamentary plasma to the specified source. The drop of the X-ray flux density in a transitive frequency region is associated with the interplay of ordinary synchrotron cooling and weaker magnetic fields concomitant with the smaller scale filaments that allow the electron injection, while the radio-optical synchrotron continuum is dominantly established by the major electrons that are quasi-secularly bound to larger filaments. With reference to, particularly, the updated external Compton model, we demonstrate that in the Klein-Nishina regime fading inverse Comptonization, the injected electrons can be stochastically energized up to a Lorentz factor as high as 5×10105\times 10^{10} in the temporal competition with diffuse synchrotron cooling; this value is larger than that attainable for a simple DSA scenario based on the resonant scattering diffusion of the gyrating electrons bound to a supposed magnetic field homogeneously pervading the entire knot. The upper limits of the photon frequency boosted via conceivable inverse Compton processes are predicted to be of the common order of 1030\sim 10^{30} Hz. The variability of the broadband spectrum is also discussed in comparison to the features of a blazar light curve. The present scenario of a peta-eV (PeV; 101510^{15} eV) electron accelerator, the "Pevatron," might provide some guidance for exploring untrod hard X-ray and gamma-ray bands in forthcoming observations.Comment: 34 pages, 6 figures, matches version published in Ap

    Atmospheric neutrino flux at INO, South Pole and Pyh\"asalmi

    Get PDF
    We present the calculation of the atmospheric neutrino fluxes for the neutrino experiments proposed at INO, South Pole and Pyh\"asalmi. Neutrino fluxes have been obtained using ATMNC, a simulation code for cosmic ray in the atmosphere. Even using the same primary flux model and the interaction model, the calculated atmospheric neutrino fluxes are different for the different sites due to the geomagnetic field. The prediction of these fluxes in the present paper would be quite useful in the experimental analysis.Comment: 12Pages,9Fig
    corecore