297 research outputs found
Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud
Electronic Health (e-Health) technology has brought the world with
significant transformation from traditional paper-based medical practice to
Information and Communication Technologies (ICT)-based systems for automatic
management (storage, processing, and archiving) of information. Traditionally
e-Health systems have been designed to operate within stovepipes on dedicated
networks, physical computers, and locally managed software platforms that make
it susceptible to many serious limitations including: 1) lack of on-demand
scalability during critical situations; 2) high administrative overheads and
costs; and 3) in-efficient resource utilization and energy consumption due to
lack of automation. In this paper, we present an approach to migrate the ICT
systems in the e-Health sector from traditional in-house Client/Server (C/S)
architecture to the virtualised cloud computing environment. To this end, we
developed two cloud-based e-Health applications (Medical Practice Management
System and Telemedicine Practice System) for demonstrating how cloud services
can be leveraged for developing and deploying such applications. The Windows
Azure cloud computing platform is selected as an example public cloud platform
for our study. We conducted several performance evaluation experiments to
understand the Quality Service (QoS) tradeoffs of our applications under
variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green
Computing (CGC 2013
Paper Session I-B - Kiss -The Kiepenheuer Institute Solar Spectograph
KISS is intended to be one of the focal plane instruments of NASA\u27s Orbiting Solar Laboratory (OSL). It will be a German contribution to the OSL program. KISS is aimed at spectroscopic studies of dynamical aspects of the solar atmosphere with time scales down to some tei seconds. Spatially resolved dynamical information will be drawn from the solar atmosphere\u27s velocity field, obtained from of spectral line structures induced by Doppler effect. The scientific goals make great demands on the optical and mechanical design of KISS which will be presented herewith
Efeito da adição do EDTPO no comportamento eletroquímico do alumínio em misturas etilenoglicol-água
00
Evaluation of Thiel cadaveric model for MRI-guided stereotactic procedures in neurosurgery
BACKGROUND: Magnetic resonance imaging (MRI)-guided deep brain stimulation (DBS) and high frequency focused ultrasound (FUS) is an emerging modality to treat several neurological disorders of the brain. Developing reliable models to train and assess future neurosurgeons is paramount to ensure safety and adequate training of neurosurgeons of the future. METHODS: We evaluated the use of Thiel cadaveric model to practice MRI-guided DBS implantation and high frequency MRI-guided FUS in the human brain. We performed three training sessions for DBS and five sonications using high frequency MRI-guided FUS in five consecutive cadavers to assess the suitability of this model to use in training for stereotactic functional procedures. RESULTS: We found the brains of these cadavers preserved in an excellent anatomical condition up to 15 months after embalmment and they were excellent model to use, MRI-guided DBS implantation and FUS produced the desired lesions accurately and precisely in these cadaveric brains. CONCLUSION: Thiel cadavers provided a very good model to perform these procedures and a potential model to train and assess neurosurgeons of the future
C3G mediated suppression of malignant transformation involves activation of PP2A phosphatases at the subcortical actin cytoskeleton
In previous work, we demonstrated that C3G suppresses Ras oncogenic transformation by a mechanism involving inhibition of ERK phosphorylation. Here we present evidences indicating that this suppression mechanism is mediated, at least in part, by serine/threonine phosphatases of the PP2A family. Thus: (i) ectopic expression of C3G or C3GΔCat (mutant lacking the GEF activity) increases specific ERK-associated PP2A phosphatase activities; (ii) C3G and PP2A interact, as demonstrated by immunofluorescence and co-immunoprecipitation experiments; (iii) association between PP2A and MEK or ERK increases in C3G overexpressing cells; (iv) phosphorylated-inactive PP2A level decreases in C3G expressing clones and, most importantly, (v) okadaic acid reverts the inhibitory effect of C3G on ERK phosphorylation. Moreover, C3G interacts with Ksr-1, a scaffold protein of the Ras-ERK pathway that also associates with PP2A. The fraction of C3G involved in transformation suppression is restricted to the subcortical actin cytoskeleton where it interacts with actin. Furthermore, the association between C3G and PP2A remains stable even after cytoskeleton disruption with cytochalasin D, suggesting that the three proteins form a complex at this subcellular compartment. Finally, C3G- and C3GΔCat-mediated inhibition of ERK phosphorylation is reverted by incubation with cytochalasin D. We hypothesize that C3G triggers PP2A activation and binding to MEK and ERK at the subcortical actin cytoskeleton, thus favouring ERK dephosphorylation. © 2007 Elsevier Inc. All rights reserved.This work was supported by grants SAF2003-04177 andGEN2003- 20239-C06-02 from MEC, Spain, FIS-FEDERPI030651, PI041324 and PI061274 from ISCIII,MSC, Spain, as well as institutional support from Redes Temáticas (C03/10 and RD06/0020/0000) de investigación en cáncer from ISCIII, MSC, Spain. S. M-E is a postodoctoral fellow supported by grant GEN2003-20239-C06-02. C.G. was supported by the Ramón y Cajal Program from the Spanish Ministry of Education.Peer Reviewe
Welcome to Zombieland: Practical and Energy-efficient Memory Disaggregation in a Datacenter
In this paper, we propose an effortless way for disaggregating the CPU-memory couple, two of the most important resources in cloud computing. Instead of redesigning each resource board, the disaggregation is done at the power supply domain level. In other words, CPU and memory still share the same board, but their power supply domains are separated. Besides this disaggregation, we make the two following contributions: (1) the prototyping of a new ACPI sleep state (called zombie and noted Sz) which allows to suspend a server (thus save energy) while making its memory remotely accessible; and (2) the prototyping of a rack-level system software which allows the transparent utilization of the entire rack resources (avoiding resource waste). We experimentally evaluate the effectiveness of our solution and show that it can improve the energy efficiency of state-of-the-art consolidation techniques by up to 86%, with minimal additional complexity
Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism
Single-stranded DNA-binding proteins (SSBs) play vital roles in all aspects of DNA metabolism in all three domains of life and are characterized by the presence of one or more OB fold ssDNA-binding domains. Here, using the genetically tractable euryarchaeon Haloferax volcanii as a model, we present the first genetic analysis of SSB function in the archaea. We show that genes encoding the OB fold and zinc finger-containing RpaA1 and RpaB1 proteins are individually non-essential for cell viability but share an essential function, whereas the gene encoding the triple OB fold RpaC protein is essential. Loss of RpaC function can however be rescued by elevated expression of RpaB, indicative of functional overlap between the two classes of haloarchaeal SSB. Deletion analysis is used to demonstrate important roles for individual OB folds in RpaC and to show that conserved N- and C-terminal domains are required for efficient repair of DNA damage. Consistent with a role for RpaC in DNA repair, elevated expression of this protein leads to enhanced resistance to DNA damage. Taken together, our results offer important insights into archaeal SSB function and establish the haloarchaea as a valuable model for further studies
- …