4 research outputs found

    Functions of height and width dimensions in the intertidal mussel, Mytilus californianus

    Get PDF
    Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 385-392, doi:10.2983/0730-8000(2008)27[385:FOHAWD]2.0.CO;2.A mussel's shell records its history of growth. We investigated variability in the size and shape of mussel shells of Mytilus californianus Conrad (1837) to test the hypothesis that the mussel shell provides information on the contemporary condition of the mussel. Two factors were associated with shape: an epithelial discoloration and the Sr/Ca in the shell nacre. Sr/Ca data distinguished the mussel populations as did a discriminate analysis that included the trace metal ratios; Sr/Ca, Mg/Ca, Mn/Ca, Ag/Ca, Cd/Ca, Ba/Ca, and Pb/Ca. Size varied independently of shape and was not associated with the two factors. However, a null model that describes the morphological variability in height and width suggests that mussel size also plays a central role in partitioning phenotypic variability. These analyses of contemporary factors coupled with analyses of morphological variability holds promise for addressing the functional roles of mussel height and width and what proportion of phenotypic variability can be attributed to environmental factors

    Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits

    No full text
    A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O-2, nutrients (N and P), micronutrients (metals), pCO(2), dissolved inorganic carbon (DIC) pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only, one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water miss should be targeted for further development

    The microbial ferrous wheel in a neutral pH groundwater seep

    Get PDF
    Evidence for microbial Fe redox cycling was documented in a circumneutral pH groundwater seep near Bloomington, Indiana. Geochemical and microbiological analyses were conducted at two sites, a semi-consolidated microbial mat and a floating puffball structure. In situ voltammetric microelectrode measurements revealed steep opposing gradients of O2 and Fe(II) at both sites, similar to other groundwater seep and sedimentary environments known to support microbial Fe redox cycling. The puffball structure showed an abrupt increase in dissolved Fe(II) just at its surface (~ 5 cm depth), suggesting an internal Fe(II) source coupled to active Fe(III) reduction. MPN enumerations detected microaerophilic Fe(II)-oxidizing bacteria (FeOB) and dissimilatory Fe(III)-reducing bacteria (FeRB) at densities of 102-105 cells mL-1 in samples from both sites. In vitro Fe(III) reduction experiments revealed the potential for immediate reduction (no lag period) of native Fe(III) oxides. Conventional full-length 16S rRNA gene clone libraries were compared withhigh throughput barcode sequencing of the V1, V4 or V6 variable regions of 16S rRNA genes in order to evaluate the extent to which new sequencing approaches could provide enhanced insight into the composition of Fe redox cycling microbial community structure. The composition of the clone libraries suggested a lithotroph-dominated microbial community centered around taxa related to known FeOB (e.g. Gallionella, Sideroxydans, Aquabacterium). Sequences related to recognized FeRB (e.g. Rhodoferax, Aeromonas, Geobacter, Desulfovibrio) were also well represented. Overall, sequences related to known FeOB and FeRB accounted for 88 and 59% of total clone sequences in the mat and puffball libraries, respectively. Taxa identified in the barcode libraries showed partial overlap with the clone libraries, but were not always consistent across different variable regions and sequencing platforms. However, the barcode libraries provided confirmati
    corecore