233 research outputs found
TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is one of four inhibitors of the matrix metalloproteinases, which are capable of degrading most components of the extracellular matrix. However, in recent years, TIMP-1 has been recognised as a multifunctional protein, playing a complex role in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional chemotherapy
Balance between matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in the cervical mucus plug estimated by determination of free non-complexed TIMP
<p>Abstract</p> <p>Background</p> <p>The cervical mucus plug (CMP) is a semi-solid structure with antibacterial properties positioned in the cervical canal during pregnancy. The CMP contains high concentrations of matrix metalloproteinase 8 and 9 (MMP-8, MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). This indicates a potential to degrade extracellular matrix components depending on the balance between free non-complexed inhibitors and active enzymes.</p> <p>Methods</p> <p>Thirty-two CMPs collected during active labor at term were analyzed. Twelve CMPs were separated into a cellular and an extracellular/fluid phase and analyzed by gelatin and reverse zymography to reveal MMP and TIMP location. Twenty samples were homogenized, extracted and studied by the TIMP activity assay based on gelatin zymography. Enzyme-linked immunosorbent assay (ELISA) was used to determine TIMP-1, MMP-8 and MMP-9 protein concentrations, and gelatin and reverse zymography used to identify gelatinases and TIMPs, respectively. The Western blotting technique was applied for semi-quantification of alpha2-macroglobulin. An ELISA activity assay was used to detect MMP-8 and MMP-9 activity.</p> <p>Results</p> <p>ProMMP-2, proMMP-9, TIMP-1 and TIMP-2 were almost exclusively located in the fluid phase compared to the cellular phase of the CMP. All the extracted samples contained MMP-8, MMP-9, TIMP-1, TIMP-2 and alpha2-macroglobulin. Free non-complexed TIMP was detected in all the samples analyzed by the TIMP activity assay and was associated with TIMP-1 protein (R = 0.71, p < 0.001) and with the TIMP/MMP molar ratio (1.7 (1.1–2.5) (mean (95% confidence interval)) (R = 0.65, p = 0.002). The ELISA activity assay showed no activity from MMP-8 or MMP-9.</p> <p>Conclusion</p> <p>Due to their extracellular location, potential proteolytic activity from neutrophil-derived MMPs in the CMP could exert a biological impact on cervical dilatation and fetal membrane rupture at term. The functional TIMP activity assay, revealing excess non-complexed TIMP, and a molar inhibitor/enzyme ratio above unity, indicate that refined MMP control prevents CMP-originated proteolytic activity in the surrounding tissue.</p
Association between Plasma Antibody Response and Protection in Rainbow Trout Oncorhynchus mykiss Immersion Vaccinated against Yersinia ruckeri
A key hallmark of the vertebrate adaptive immune system is the generation of antigen-specific antibodies from B cells. Fish are the most primitive gnathostomes (jawed vertebrates) possessing an adaptive immune system. Vaccination of rainbow trout against enteric redmouth disease (ERM) by immersion in Yersinia ruckeri bacterin confers a high degree of protection to the fish. The immune mechanisms responsible for protection may comprise both cellular and humoral elements but the role of specific immunoglobulins in this system has been questioned and not previously described. The present study demonstrates significant increase in plasma antibody titers following immersion vaccination and significantly reduced mortality during Y. ruckeri challenge
Screening for colorectal cancer: possible improvements by risk assessment evaluation?
Emerging results indicate that screening improves survival of patients with colorectal cancer. Therefore, screening programs are already implemented or are being considered for implementation in Asia, Europe and North America. At present, a great variety of screening methods are available including colono- and sigmoidoscopy, CT- and MR-colonography, capsule endoscopy, DNA and occult blood in feces, and so on. The pros and cons of the various tests, including economic issues, are debated. Although a plethora of evaluated and validated tests even with high specificities and reasonable sensitivities are available, an international consensus on screening procedures is still not established. The rather limited compliance in present screening procedures is a significant drawback. Furthermore, some of the procedures are costly and, therefore, selection methods for these procedures are needed. Current research into improvements of screening for colorectal cancer includes blood-based biological markers, such as proteins, DNA and RNA in combination with various demographically and clinically parameters into a “risk assessment evaluation” (RAE) test. It is assumed that such a test may lead to higher acceptance among the screening populations, and thereby improve the compliances. Furthermore, the involvement of the media, including social media, may add even more individuals to the screening programs. Implementation of validated RAE and progressively improved screening methods may reform the cost/benefit of screening procedures for colorectal cancer. Therefore, results of present research, validating RAE tests, are awaited with interest
Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3040
Sugary interfaces mitigate contact damage where stiff meets soft
The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3(+)-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA-and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices
- …