5,235 research outputs found
Mirror, Mirror on the Wall: An International Update on the Comparative Performance of American Health Care
Using data from patient and physician surveys, finds that the U.S. healthcare system ranks last or next-to-last when comparing healthcare performance against that of five other nations -- Australia, Canada, Germany, New Zealand, the United Kingdom
Development of a Cartilage Oligomeric Matrix Protein Neo-Epitope Assay for the Detection of Intra-Thecal Tendon Disease
The diagnosis of tendon injury relies on clinical signs and diagnostic imaging but imaging is subjective and does not always correlate with clinical signs. A molecular marker would potentially offer a sensitive and specific diagnostic tool that could also provide objective assessment of healing for the comparison of different treatments. Cartilage Oligomeric Matrix Protein (COMP) has been used as a molecular marker for osteoarthritis in humans and horses but assays for the protein in tendon sheath synovial fluids have shown overlap between horses affected by tendinopathy and controls. We hypothesized that quantifying a COMP neoepitope would be more discriminatory of injury. COMP fragments were purified from synovial fluids of horses with intra-thecal tendon injuries and media from equine tendon explants, and mass spectrometry of a consistent and abundant fragment revealed a ~100 kDa COMP fragment with a new N-terminus at the 78th amino-acid (NH2-TPRVSVRP) located just outside the junctional region of the protein. A competitive inhibition ELISA based on a polyclonal antibody raised to this sequence yielded more than a 10-fold rise in the mean neoepitope levels for tendinopathy cases compared to controls (5.3 ± 1.3 µg/mL (n = 7) versus 58.8 ± 64.3 µg/mL (n = 13); p = 0.002). However, there was some cross-reactivity of the neoepitope polyclonal antiserum with intact COMP, which could be blocked by a peptide spanning the neoepitope. The modified assay demonstrated a lower concentration but a significant > 500-fold average rise with tendon injury (2.5 ± 2.2 ng/mL (n = 6) versus 1029.8 ± 2188.8 ng/ml (n = 14); p = 0.013). This neo-epitope assay therefore offers a potentially useful marker for clinical use
Solving Lattice QCD systems of equations using mixed precision solvers on GPUs
Modern graphics hardware is designed for highly parallel numerical tasks and
promises significant cost and performance benefits for many scientific
applications. One such application is lattice quantum chromodyamics (lattice
QCD), where the main computational challenge is to efficiently solve the
discretized Dirac equation in the presence of an SU(3) gauge field. Using
NVIDIA's CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector
product that performs at up to 40 Gflops, 135 Gflops and 212 Gflops for double,
single and half precision respectively on NVIDIA's GeForce GTX 280 GPU. We have
developed a new mixed precision approach for Krylov solvers using reliable
updates which allows for full double precision accuracy while using only single
or half precision arithmetic for the bulk of the computation. The resulting
BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations
until convergence, perform better than the usual defect-correction approach for
mixed precision.Comment: 30 pages, 7 figure
Governance in Service Delivery in the Middle East and North Africa. World Development Report Background Paper
This paper examines the clientelistic equilibrium that remains prevalent in much of the Middle East and North Africa (MENA) region during the post-independence period, undermining service delivery and creating inequality in access. Political institutions and social practices that shape incentives for policymakers, service providers, and citizens create what can be called a potentially tenuous, “clientelistic equilibrium.” Service delivery is influenced by political institutions that allow for the capture of public jobs and service networks, and by social institutions that call upon individuals to respond more readily to members of their social networks than to others. The result is poor quality service delivery (e.g., absenteeism, insufficient effort), difficulties in access (e.g., need for bribes, connections), and inequalities in the provision of services
Localization of thioredoxin in the rat brain and functional implications
The immunoreactivity for thioredoxin, which catalyzes protein disulfide reductions, has previously been shown to exist in nerve cells and their axons. Here we demonstrate the localization of thioredoxin mRNA as revealed by in situ hybridization in the rat brain. The gene is expressed in nerve cells of a variety of brain regions, for example, the cerebral cortex, the piriform cortex, the medial preoptic area, the CA3/CA4 region of the hippocampal formation, the dentate gyrus, the paraventricular nucleus of the hypothalamus, the arcuate nucleus, the substantia nigra pars compacta, the locus coeruleus, the ependyma of the 4th ventricle, and the epithelial cells of the choroid plexus. This distribution implicates an important function in nerve cell metabolism, especially in regions with high energy demands and indicates a role of the choroid plexus in nerve cell protection from environmental influences. It was found that after mechanical injury induced by partial unilateral hemitransection the thioredoxin mRNA expression is upregulated in the lesioned area and spreads to the cortical hemispheres at the lesioned level. This induction suggests a function of thioredoxin in the regeneration machinery of the brain following mechanical injury and oxidative stress
Discovery of photospheric argon in very hot central stars of planetary nebulae and white dwarfs
We report the first discovery of argon in hot evolved stars and white dwarfs.
We have identified the ArVII 1063.55A line in some of the hottest known
(Teff=95000-110000 K) central stars of planetary nebulae and (pre-) white
dwarfs of various spectral type. We determine the argon abundance and compare
it to theoretical predictions from stellar evolution theory as well as from
diffusion calculations. We analyze high-resolution spectra taken with the Far
Ultraviolet Spectroscopic Explorer. We use non-LTE line-blanketed model
atmospheres and perform line-formation calculations to compute synthetic argon
line profiles. We find a solar argon abundance in the H-rich central star
NGC1360 and in the H-deficient PG1159 star PG1424+535. This confirms stellar
evolution modeling that predicts that the argon abundance remains almost
unaffected by nucleosynthesis. For the DAO-type central star NGC7293 and the
hot DA white dwarfs PG0948+534 and REJ1738+669 we find argon abundances that
are up to three orders of magnitude smaller than predictions of calculations
assuming equilibrium of radiative levitation and gravitational settling. For
the hot DO white dwarf PG1034+001 the theoretical overprediction amounts to one
dex. Our results confirm predictions from stellar nucleosynthesis calculations
for the argon abundance in AGB stars. The argon abundance found in hot white
dwarfs, however, is another drastic example that the current state of
equilibrium theory for trace elements fails to explain the observations
quantitatively.Comment: Accepted for publication in A&
Actions needed to halt deforestation and promote climate-smart agriculture
Integrated action across Reduced Emissions from Deforestation and forest Degradation (REDD+) and agriculture is necessary to achieve mitigation and food security outcomes
Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow
Mice have a large visual field that is constantly stabilized by vestibular ocular reflex (VOR) driven eye rotations that counter head-rotations. While maintaining their extensive visual coverage is advantageous for predator detection, mice also track and capture prey using vision. However, in the freely moving animal quantifying object location in the field of view is challenging. Here, we developed a method to digitally reconstruct and quantify the visual scene of freely moving mice performing a visually based prey capture task. By isolating the visual sense and combining a mouse eye optic model with the head and eye rotations, the detailed reconstruction of the digital environment and retinal features were projected onto the corneal surface for comparison, and updated throughout the behavior. By quantifying the spatial location of objects in the visual scene and their motion throughout the behavior, we show that the prey image consistently falls within a small area of the VOR-stabilized visual field. This functional focus coincides with the region of minimal optic flow within the visual field and consequently area of minimal motion-induced image-blur, as during pursuit mice ran directly toward the prey. The functional focus lies in the upper-temporal part of the retina and coincides with the reported high density-region of Alpha-ON sustained retinal ganglion cells.Mice have a lot to keep an eye on. To survive, they need to dodge predators looming on land and from the skies, while also hunting down the small insects that are part of their diet. To do this, they are helped by their large panoramic field of vision, which stretches from behind and over their heads to below their snouts. To stabilize their gaze when they are on the prowl, mice reflexively move their eyes to counter the movement of their head: in fact, they are unable to move their eyes independently. This raises the question: what part of their large visual field of view do these rodents use when tracking a prey, and to what advantage? This is difficult to investigate, since it requires simultaneously measuring the eye and head movements of mice as they chase and capture insects. In response, Holmgren, Stahr et al. developed a new technique to record the precise eye positions, head rotations and prey location of mice hunting crickets in surroundings that were fully digitized at high resolution. Combining this information allowed the team to mathematically recreate what mice would see as they chased the insects, and to assess what part of their large visual field they were using. This revealed that, once a cricket had entered any part of the mices large field of view, the rodents shifted their head - but not their eyes - to bring the prey into both eye views, and then ran directly at it. If the insect escaped, the mice repeated that behavior. During the pursuit, the crickets position was mainly held in a small area of the mouses view that corresponds to a specialized region in the eye which is thought to help track objects. This region also allowed the least motion-induced image blur when the animals were running forward. The approach developed by Holmgren, Stahr et al. gives a direct insight into what animals see when they hunt, and how this constantly changing view ties to what happens in the eyes. This method could be applied to other species, ushering in a new wave of tools to explore what freely moving animals see, and the relationship between behaviour and neural circuitry
Freely-moving mice visually pursue prey using a retinal area with least optic flow
Mice have a large visual field that is constantly stabilized by vestibular ocular reflex driven eye rotations that counter head-rotations. While maintaining their extensive visual coverage is advantageous for predator detection, mice also track and capture prey using vision. However, in the freely moving animal quantifying object location in the field of view is challenging. Here, we developed a method to digitally reconstruct and quantify the visual scene of freely moving mice performing a visually based prey capture task. By isolating the visual sense and combining amouse eye optic model with the head and eye rotations, the detailed reconstruction of the digital environment and retinal features were projected onto the corneal surface for comparison, and updated throughout the behavior. By quantifying the spatial location of objects in the visual scene and their motion throughout the behavior, we show that the image of the prey is maintained within a small area, the functional focus, in the upper-temporal part of the retina. This functional focus coincides with a region of minimal optic flow in the visual field and consequently minimal motion-induced image blur during pursuit, as well as the reported high density-region of Alpha-ON sustained retinal ganglion cells
- …